CsC

Elmer

Software Development Practices
APIs for Solver and UDF

ElmerTeam

CSC-IT Center for Science, Finland
CSC, 2018



Elmer programming languages

 Fortrango (and newer)

oElmerSolver (~ 300,000 lines of which ~50% in DLLs)

e C++

oElmerGUI (~18,000 lines)
oElmerSolver (~15,000 lines)

*C
o ElmerGrid (~30,000 lines)
oMATC (~11,000 lines)
o ElmerPost (~45,000 lines)



Tools for EImer development

* Programming languages

o Fortrango (and newer), C, C++

Compilation & testing

o Compiler (e.g. gnu), cmake, ctest

Editing

o emacs, vi, notepad++,...

Code hosting (git)
o https://github.com/ElmerCSC

Consistency tests

o Currently more than 500

Code documentation

o Doxygen



Elmer libraries

* ElmerSolver

oRequired: Matc, Hutlter, Lapack, Blas, Umfpack (GPL)

oOptional: Arpack, Mumps, Hypre, Pardiso, Trilinos,
SuperLU, Cholmod, NetCDF, HDFs, ...

* ElmerGUI

oRequired: Qt, EImerGrid, Netgen
oOptional: Tetgen, OpenCASCADE, VTK, QVT



Elmer licenses

* ElmerSolver library is published under LGPL

oEnables linking with all license types
oltis possible to make a new solver even under proprierity license

oNote: some optional libraries may constrain this freedom due to use of
GPL licences

* Most other parts of ElImer published under GPL

oDerived work must also be under same license (“copyleft”)

* Proprierity modules linked with ElmerSolver may be freely
licensed if they are not derived work

oNote that you must not violete licences of other libraries



Elmer version control at GitHub

* Elmer source code is hosted at
https://github.com/ElmerCSC

* Git offers extreme flexibility

oDistributed version control system

oEasy to maintain several development branches

oMany options and hence also steeper learning curve
oDeveloped by Linus Torvalds to host Linux kernel development

* GitHub is a portal providing Git and some additional
servives

oManagement of user rights
oControlling pull requests


https://github.com/ElmerCSC

Cmake build system

* Elmer currently uses cmake for building since 2015

* Cmake offers several advantages (over gnu autotools)

oEnables cross compilation for diffirent platforms
(e.g. Intel MICs)

oMore standardizes installation scripts

oStraight-forward package creation for many systems
(using cpack)
o Great testing utility with ctest — now also in parallel

* Transition to cmake required significant code changes

0lSO C-bindings & many changes in APIs
oBackward compatibility in compilation lost



Compiling fresh Elmer source from GitHub —

# clone the git repository.
$ git clone https://www.github.com/ElmerCSC/elmerfem

# Switch to devel branch (currently the default branch)
$ cd elmerfem

$ git checkout devel

scd..

# create build director $ cmake -DWITH_ELMERGUI:BOOL=FALSE -
ki build y DWITH_MPI:BOOL=FALSE -

. DCMAKE INSTALL PREFIX=../install../elmerfem
$ cd build - -

$ cmake <flags>
# You can tune the compilation parameters graphically with $ ccmake or $cmake-gui.

$ make install
# or alternatively compile in parallel (4 procs) $ make -j4 install



Consistency tests

* Utilize ctest system to run a set of EImer cases
oUpon success each case writes 1 to file TEST.PASSED,
and on failure o, respectively
* There are more than 580 consistency tests (May 2018)

oLocated under fem/tests

* Each time a significant commit is made the tests are run with the fresh version

oAim: even devel version is a stable
oNew tests for each major new feature

* The consistency tests provide a good starting point for taking some Solver into
use

ocut-paste from sif file



Executing the consistency tests of EImer

>ctest -j4 -LE elmerice
Start 143: mgdyn torus harmonic

1/310

2/310

3/310

308/310
309/310

310/310

Start 304:
Start 344:
Test #344:
Start 293:
Test #304:
Start 222:
Test #293:
Start 322:

Test #46:
Test #212:
Start 54:
Test #54:

100% tests passed,

Total Test time

ThermalActuator
RotatingBCMagnetoDynamicsGeneric
RotatingBCMagnetoDynamicsGeneric
mgdyn lamstack lowfreq harmonic
ThermalActuator
mgdyn transient loss

mgdyn lamstack lowfreq harmonic
mgdyn_ bh

CoupledPoisson?
CoordinateScaling
RotatingBCPoisson3DSymmSkev
RotatingBCPoisson3DSymmSkev

0 tests failed out of 310

(real) = 365.62 sec

Passed

Passed

Passed

Passed
Passed

Passed

43.

59.

21.

18

78

80

.38
.38

.34

secC

secC

secC

secC
secC

secC



Compilation of a DLL module

* Applies both to Solvers and User Defined Functions (UDF)

* Assumes that there is a working compile environment that
provides “elmer£90"” script

oComes with the Windows installer, and Linux packages
o Generated automatically when ElmerSolveris compiled

elmerf90 MySolver.F90 -o MySolver.so



User defined function API

FUNCTION MyProperty( Model, n, t ) RESULT(f)

USE DefUtils
IMPLICIT NONE

TYPE (Model t) :: Model !< Handle to all data
INTEGER :: n !< Current node

REAL (KIND=dp) :: t !< Parameter (s)

REAL (KIND=dp) :: £ !< Parameter wvalue at node

Actual code ..



Function API

MyProperty = Variable time
”"MyModule" ”“MyProperty”

* User defined function (UDF) typically returns a real valued
property at a given point

* It can be located in any section that is used to fetch these
values from a list

oBoundary Condition, Initial Condition, Material, ...

* Note: function is called for all nodes (or gauss points) of all
elements

oSave constly initializations!



UDF Example: sinusoidal heat source

FUNCTION MySource( Model, n, t ) RESULT( f)

USE DefUrtils
IMPLICIT NONE

TYPE(Model t):: Model

INTEGER :: n

REAL(KIND=dp):: t, f

REAL(KIND=dp), PARAMETER :: a=1.23, w=4.56

f = a*sin(w*t)

END FUNCTION MySource

19

Body Force 1
Name = ”Heating”
Heat Source = Variable time
Real Procedure "MyModule” ”’Sinus”
End



UDF Example: sinusoidal heat source with SIF control 1

FUNCTION MySource( Model, n, t ) RESULT(f) Simulation
USE DefUtils
IMPLICIT NONE )
My Amplitude = Real 1.23
TYPE(Model_t) :: Model My Angular Velocity = Real 4.56
INTEGER :: n End

REAL(KIND=dp) :: t, f

REAL(KIND=dp) :: a=1.23, w=4.56

LOGICAL :: Visited = .FALSE.

SAVE a, w, Visited Body Force 1

o Name = ”Heating”
IF(.NOT. Visited ) THEN

a = ListGetConstReal( Model % Simulation,”My Amplitude’) Heat Source = Variable time )

w = ListGetConstReal( Model % Simulation,’My Angular Velocity”) Real Procedure ”MyModule” ”Sinus”
Visited = .TRUE. End
END IF

f = a*sin(w*t)
END FUNCTION MySource

20



Solver API

USE DefUtils
IMPLICIT NONE

TYPE (Solver t) :: Solver [!< Current solver

TYPE (Model t) :: Model !< Handle to all data
REAL (KIND=dp) :: dt !< Timestep size

LOGICAL :: Transient !< Time-dependent or not

Actual code ..



Solver API

Solver 1
Equation = ”“MySolver"
Procedure = "“MyModule" ”“"MySolver”

End

* Solver is typically a FEM implementation of a physical equation

* But it could also be an auxiliary solver that does something
completely different

* Solver is usually called once for each coupled system iteration



Elmer — High level abstractions

* The quite good success of Elmer as a multiphysics code may
be addressed to certain design choices

oSolver is an asbtract dynamically loaded object
oParameter value is an abstract property fecthed from a list

* The abstractions mean that new solvers may be implemented
without much need to touch the main library
oMinimizes need of central planning
oSeveral applications fields may live their life quite independently
(electromagnetics vs. glaceology)

* MATC — a poor man’s Matlab adds to flexibility as algebraic
expressions may be evalueted on-the-fly



Solver as an abstract object T

* Solver is an dynamically loaded object (.dll or .s0)
o May be developed and compiled seperately

* Solver utilizes heavily common library utilities
o Most common ones have interfaces in DefUrtils

* Any solver has a handle to all of the data
* Typically a solver solves a weak form of a differential equation

* Currently ~60 different Solvers,
roughly half presenting physical phenomena

oNo upper limit to the number of Solvers
oOften cases include ~10 solvers

* Solvers may be active in different domains,
and even meshes

* The menu structure of each solver in ElImerGUI may be defined by an . xm1 file



Property as an abstract object ——

* Properties are saved in a list structure by their name

* Namespace of properties is not fixed, they may be introduced in the command file

oE.g."MyProperty = Real 1.23"addsa property “MyProperty” to a list structure related to the
solver block

* In code parameters are fetched from the list

oE.g."val = GetReal( Material,’MyProperty’, Found)”retrievesthe above value 1.23from
the list

A "Real” property may be any of the following
o Constant value
o Linear or cubic dependence via table of values
o Expression given by MATC (MatLab-type command language)
o User defined functions with arbitrary dependencies
o Real vector or tensor

* As aresult solvers may be weakly coupled without any a priori defined manner
* There is a price to pay for the generic approach but usually it is less than 10%

* SOLVER.KEYWORDS file may be used to give the types for the keywords in the command file



Code structure

* Elmer code structure has evolved over the years

oThere has been no major restructuring operations

 Ufortunately there is no optimal hierarchy and the number of
subroutines is rather large

oElmerSolver library consists of more than ~40 modules

oThere are all-in-all around 1050 SUBROUTINES and
650 FUNCTIONS (both internal and external)

* To ease the learning curve the most important routines for
basic use have been collected into module DefUtils.Fgo



DefUtils

* DefUtils module includes wrappers to the basic tasks common
to standard solvers

oE.qg."DefaultDirichlet()” sets Dirichlet boundary conditions to
the given variable of the Solver

oE.g."DefaultSolve () “solves linear systems with all available
direct, iterative and multilevel solvers, both in serial and parallel

* Programming new Solvers and UDFs may usually be done
without knowledge of other modules



DefUtils — some functions

Public Member Functions

TYPE(Solver_t) function, pointer GetSolver ()
TYPE(Matrix_t) function, pointer GetMatrix (USolver)
TYPE(Mesh_t) function, pointer GetMesh (USolver)
TYPE(Element_t) function, pointer GetCurrentElement (Element)
INTEGER function GetElementIndex (Element)
INTEGER function GetNOFActive (USolver)
REAL(KIND=dp) function GetTime ()
INTEGER function GetTimeStep ()
INTEGER function GetTimeStepInterval ()
REAL(KIND=dp) function GetTimestepSize ()
REAL(KIND=dp) function GetAngularFrequency (Valuelist, Found)
INTEGER function GetCoupledIter ()
INTEGER function GetNonlinIter ()
INTEGER function GetNOFBoundaryElements (UMesh)
subroutine GetScalarLocalSolution (x, name, UElement, USolver, tStep)
subroutine GetVectorLocalSolution (x, name, UElement, USolver, tStep)
INTEGER function GetNofEigenModes (name, USolver)
subroutine GetScalarlLocalEigenmode (x, name, UElement, USolver, NoEigen, ComplexPart)
subroutine GetVectorLocalEigenmode (x, name, UElement, USolver, NoEigen, ComplexPart)
CHARACTER(LEN=MAX_NAME_LEN)
function GetString (List, Name, Found)
INTEGER function GetInteger (List, Name, Found)
LOGICAL function GetLogical (List, Name, Found)
recursive REAL(KIND=dp) function GetConstReal (List, Name, Found, x, y, 2)
recursive REAL(KIND=dp) function GetCReal (List, Name, Found)
recursive REAL(KIND=dp)
function, dimension(:),
pointer GetReal (List, Name, Found, UElement)



Example: Poisson equation

* Implemented as an dynamically linked solver

oAvailable under tests/adtests

* Compilation by:
Elmerf90 Poisson.F90 -o Poisson.so

* Execution by:
ElmerSolver case.sif

* The example is ready to go massively parallel and with all a
plethora of elementtypes in 1D, 2D and 3D



Poisson equation: code Poisson.Fgo

!> Solve the Poisson equation -\nabla\cdot\nabla \phi = \rho
1

SUBROUTINE PoissonSolver( Model,Solver,dt, TransientSimulation )

USE DefUtils
IMPLICIT NONE

!Initialize the system and do the assembly:
1

CALL Defaultinitialize()

active = GetNOFActive()

DO t=1,active
Element => GetActiveElement(t)
n = GetElementNOFNodes()

LOAD = o0.0do
BodyForce => GetBodyForce()
IF ( ASSOCIATED(BodyForce) ) &
Load(1:n) = GetReal( BodyForce, 'Source', Found )

! Get element local matrix and rhs vector:

CALL LocalMatrix( STIFF, FORCE, LOAD, Element, n)

! Update global matrix and rhs vector from local contribs
1
CALL DefaultUpdateEquations( STIFF, FORCE )

END DO

CALL DefaultFinishAssembly()
CALL DefaultDirichletBCs()
Norm = DefaultSolve()

CONTAINS

SUBROUTINE LocalMatrix(  STIFF, FORCE, LOAD, Element, n)

CALL GetElementNodes( Nodes )

STIFF = 0.0do
FORCE = 0.0do

! Numerical integration:
IP = GaussPoints( Element )
DOt=1,IP %n
! Basis function values & derivatives at the integration point:
1
stat = Elementinfo( Element, Nodes, IP % U(t), IP % V(t), &
IP % W(t), detJ, Basis, dBasisdx )

! The source term at the integration point:
1

LoadAtIP = SUM( Basis(1:n) * LOAD(1:n) )

! Finally, the elemental matrix & vector:
STIFF(1:n,1:n) = STIFF(1:n,1:n) + IP % s(t) * Det) * &
MATMUL( dBasisdx, TRANSPOSE( dBasisdx ) )
FORCE(1:n) = FORCE(1:n) + IP % s(t) * DetJ * LoadAtIP * Basis(1:n)
END DO

END SUBROUTINE LocalMatrix

END SUBROUTINE PoissonSolver




Poisson equation: command file case.sif

Check Keywords "Warn"

Header
Mesh DB "." ”mesh"
End

Simulation
Coordinate System = "Cartesian"
Simulation Type = Steady State
Steady State Max Iterations = 50
End

Body 1
Equation =1
Body Force =1

End

Equation 1
Active Solvers(1) =1
End

Solver1
Equation ="Poisson"
Variable = "Potential"
Variable DOFs =1

Procedure ="Poisson" "PoissonSolver"

Linear System Solver = "Direct”

Linear System Direct Method = umfpack
Steady State Convergence Tolerance = 1e-09

End

Body Force 1
Source = Variable Potential
Real Procedure "Source" "Source”
End

Boundary Condition 1
Target Boundaries(2) =12
Potential = Real o

End



Poisson equation: source term, examples
Constant source:

Source = 1.0

Source dependeing piecewise linear on x:

Source = Variable Coordinate 1

Real
0.0 0.0
1.0 3.0
2.0 4.0
End

Source depending on x and y:

Source = Variable Coordinate
Real MATC ”sin (2*pi*tx(0))*cos (2*pi(tx(1))”

Source depending on anything

Source = Variable Coordinate 1
Procedure ”Source” ”“MySource”



Poisson equation: EImerGUI menus

<>xml version="1.0" encoding='UTF-8'?>
<!DOCTYPE edf>
<edf version="1.0" >
<PDE Name="Poisson" >
<Name>Poisson</Name>

<BodyForce>
<Parameter Widget="Label" > <Name> Properties </Name> </Parameter>
<Parameter Widget="Edit" >
<Name> Source </Name>
<Type> String </Type>
<Whatis> Give the source term. </Whatis>
</Parameter>
</BodyForce>

<Solver>
<Parameter Widget="Edit" >
<Name> Procedure </Name>
<DefaultValue> "Poisosn" "PoissonSolver" </DefaultValue>
</Parameter>
<Parameter Widget="Edit">
<Name> Variable </Name>
<DefaultValue> Potential</DefaultValue>
</Parameter>
</Solver>

<BoundaryCondition>
<Parameter Widget="Label" > <Name> Dirichlet conditions </Name> </Parameter>
<Parameter Widget="Edit">
<Name> Potential </Name>
<Whatis> Give potential value for this boundary. </Whatis>
</Parameter>
</BoundaryCondition>
</PDE>
<[edf>



Elmer — some best practices

* Use version control when

olf the code is left to your own local disk, you might as well not write it at
all

oMerge often to the upstream, rather not fork

* Always make a consistency test for a new feature

oAlways be backward compatible
olf not, implement a warning to the code

* Maximize the level of abstraction

oEssential for multiphysics software

oE.g. any number of physical equations,
any number of computational meshes,
any number of physical or numerical parameters — without the need for
recompilation



