Mesh related features in Elmer

CSC

ElmerTeam CSC – IT Center for Science, Finland

CSC, 2018

Outline

csc

Supported element types

 \circ Shapes

 \circ Basic functions

- Mesh generation within ElmerSolver

 Mesh multiplication
 Mesh extrusion
- Adaptivity very limited
- Mesh deformation & movement
- Mesh projectors

Mapping between meshesMortar finite elements

ElmerSolver – Finite element shapes

- All standard shaper of Finite Elements are supported
 - ooD: point
 - 01D: segment
 - o2D: triangles, quadrilateralso3D: tetraherdons, wedges, pyramids, hexahedrons
- Meshes may have mixed element types
- There may be also several meshes in same simulation

ElmerSolver – basis functions

• Element families

Nodal (up to 2-4th degree)
p-elements (up to 1oth degree)
Edge & face –elements

H(div) - often associated with "face" elements)
H(curl) - often associated with "edge" elements)

Formulations

Galerkin, Discontinuous Galerkin
 Stabilization
 Residual free bubbles

ElmerSolver – internal mesh generation

• Internal mesh division

c 2^*DIM*^*n* -fold problem-size *c* Known as "**Mesh Multiplication**" *c* Simple inheritance of mesh grading

- Internal mesh extrusion • Extruded given number of layers
- Idea is to remove bottle-necks from mesh generation • These can also be performed on a parallel level
- Limited by generality since the internal meshing features cannot increase the geometry description

Mesh multiplication example

Mesh Levels	Number of Elements
1	7 920
2	63 360
3	506 880
4	4 055 040

Limitations of mesh multiplication

- Standard mesh multiplication does not increase geometric accuracy
 - $\circ\, {\rm Polygons}\, {\rm retain}\, {\rm their}\, {\rm shape}$
 - Mesh multiplication could be made to honor boundary shapes but this is not currently done
- Optimal mesh grading difficult to achieve

 The coarsest mesh level does not usually have sufficient
 information to implement fine level grading

ElmerSolver - Internal mesh extrusion

• Start from an initial 2D (1D) mesh and then extrude into 3D (2D)

 $\circ\, \text{Mesh}$ density may be given by arbitrary function

- Implemented also for partitioned meshes • Extruded lines belong to the same partition by construction!
- There are many problems of practical problems where the mesh extrusion of a initial 2D mesh provides a good solution
 - One such field is glasiology where glaciers are thin, yet the 2D approach is not always sufficient in accurary

Extruded Mesh Levels = 21 Extruded Mesh Density = Variable Coordinate 1 Real MATC "1+10*tx"

ElmerSolver - Internal extrusion example

CSC

Design Alvar Aalto, 1936

2D mesh by Gmsh

3D internally extruded mesh

Summary: Alternatives for increasing mesh resolution

• Use of higher order nodal elements

 Elmer supports 2nd to 4th order nodal elements
 Unfortunately not all preprocessing steps are equally well supported for higher order elements

 \circ E.g. Netgen output supported only for linear elements

• Use of hierarhical p-element basis functions

Support up to 10th degree polynomials
In practice Element = p:2, or p:3
Not supported in all Solvers

• Mesh multiplication

 $\circ\, {\rm Subdivision}\, {\rm of}\, {\rm elements}\, {\rm by}\, {\rm splitting}$

ElmerSolver – Mesh deformation

- Meshes may be internally deformed
- MeshUpdate solver uses linear elasticity equation to deform the mesh
- **RigidMeshMapper** uses rigid deformations and their smooth transitions to deform the mesh
- Deforming meshes have number of uses

 Deforming structures in multiphysics simultion

 E.g. fluid-structure interaction, ALE
 Rotating & sliding structures
 Geometry optimization

 Mesh topology remains unchanged

Mapping & Projectors

• Ensuring continuity between conforming and nonconforming meshes

 $\,\circ\, {\sf For}\, {\sf boundary}\, {\sf and}\, {\sf bulk}\, {\sf meshes}$

On-the-fly interpolation (no matrix created)

 Mapping of finite element data

 from mesh to mesh
 From boundary to boundary

Creation of interpolation and projection matrices

 Strong continuity, interpolation: x_l = Px_r
 Weak continuity, Mortar projector: Qx_l - Px_r = 0

Tie contact in linear elasticity using mortar finite elements

Example: Mesh utilities applied to rotational problems

- Rigid body movement may be used to implement rotation
- One of several contact pairs are used to define mortar projectors that ensure continuity of soluton
- Most important application area has been the simulation of electrical machines

Concluding remarks on internal meshing features

- Internal meshing features can be used to resolve number of challenges related to meshes
 - \circ Accuracy
 - \circ I/O bottle-necks
 - \circ Continuity requirements
 - \circ Multiphysics coupling
 - $\circ \text{Deforming or moving computational domains}$

