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Outline

* Supported element types

oShapes
oBasic functions

* Mesh generation within EImerSolver

oMesh multiplication
oMesh extrusion

 Adaptivity — very limited
* Mesh deformation & movement

* Mesh projectors

oMapping between meshes
oMortar finite elements
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ElmerSolver - Finite element shapes

* All standard shaper of Finite Elements are
supported
ooD: point
o01D: segment
02D: triangles, quadrilaterals
03D: tetraherdons, wedges, pyramids, hexahedrons

* Meshes may have mixed element types

* There may be also several meshes in same
simulation

Triangle

Pyramid

Tetrahedron

Quadrilateral

>

Prism with triangular
base

L2

Hexahedron




ElmerSolver - basis functions

* Element families »

oNodal (up to 2-4th degree)
op-elements (up to 10th degree)

oEdge & face —elements
oH(div) - often associated with”face” elements)
oH(curl) - often associated with “edge” elements)

e Formulations

oGalerkin, Discontinuous Galerkin
oStabilization

oResidual free bubbles




ElmerSolver - internal mesh generation

* Internal mesh division

02\DIM"n -fold problem-size
oKnown as “Mesh Multiplication” :
oSimple inheritance of mesh grading

* Internal mesh extrusion
oExtruded given number of layers

* Idea is to remove bottle-necks from mesh generation : /

oThese can also be performed on a parallel level

* Limited by generality since the internal meshing
features cannot increase the geometry description




Mesh multiplication example

Mesh Number of
Levels Elements

1 7 920
2 63 360

3 506 880
4 4 055 040




Limitations of mesh multiplication

* Standard mesh multiplication does not
Increase geometric accuracy

oPolygons retain their shape
oMesh multiplication could be made to honor boundary

shapes but this is not currently done
* Optimal mesh grading difficult to achieve

o The coarsest mesh level does not usually have sufficient
information to implement fine level grading




ElmerSolver - Internal mesh extrusion

e Start from an initial 2D (2D) mesh and then extrude
into 3D (2D)
o Mesh density may be given by arbitrary function

* Implemented also for partitioned meshes

oExtruded lines belong to the same partition by
construction!

* There are many problems of practical problems
where the mesh extrusion of a initial 2D mesh
provides a good solution

Extruded Mesh Levels = 21
oOne such field is glasiology where glaciers are thin, yet Extruded Mesh Density =

the 2D approach is not always sufficient in accurary Variable Coordinate 1
Real MATC "1+10*tx"



ImerSolver - Internal extrusion example
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Summary: Alternatives for increasing mesh resolution

* Use of higher order nodal elements

oElmer supports 2nd to 4th order nodal elements
oUnfortunately not all preprocessing steps are equally well supported for
higher order elements
o E.g. Netgen output supported only for linear elements
* Use of hierarhical p-element basis functions

oSupport up to 10th degree polynomials
oln practice Element = p:2, or p:3
oNot supported in all Solvers

* Mesh multiplication

oSubdivision of elements by splitting



ElmerSolver —- Mesh deformation

* Meshes may be internally deformed

* MeshUpdate solver uses linear elasticity
equation to deform the mesh

* RigidMeshMapper uses rigid deformations and
their smooth transitions to deform the mesh

* Deforming meshes have number of uses

oDeforming structures in multiphysics simultion
o E.g. fluid-structure interaction, ALE

oRotating & sliding structures

o Geometry optimization
o Mesh topology remains unchanged



Mapping & Projectors

* Ensuring continuity between conforming and
nonconforming meshes

oForboundary and bulk meshes

* On-the-fly interpolation (no matrix created)

oMapping of finite element data
o from mesh to mesh
o From boundary to boundary

* Creation of interpolation and projection matrices

oStrong continuity, interpolation: x; = Px,

o Weak continuity, Mortar projector: Qx; — Px,, = 0

Tie contact in linear elasticity
using mortar finite elements



Example: Mesh utilities applied to rotational problems

* Rigid body movement may be used to
implement rotation

* One of several contact pairs are used to define
mortar projectors that ensure continuity of
soluton

* Most important application area has been the
simulation of electrical machines
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Concluding remarks on internal meshing features

* Internal meshing features can be used to resolve number of
challenges related to meshes
oAccuracy
ol/O bottle-necks
o Continuity requirements
oMultiphysics coupling
oDeforming or moving computational domains



