Some theory behind Model PDE of Elmer

ElmerTeam

CSC - IT Center for Science

CSC, 1.6.2017

ElmerTeam

- Advection-diffusion-reaction equation
 - Prototype equation similar to: heat equation, elecstrostatic equation, static curent conduction, Darcy flow etc.
- Transient or steady
- Serial or parallel
- With our without bubble stabilization
- Code is available as module ModelPDE.F90
- Tutorial is available among the ElmerGUI tutorials

Continuous problem

Solve a field u = u(x, t) on $\Omega \times [0, T]$ that satisfy the convection-diffusion equation

$$\rho \frac{\partial u}{\partial t} + \kappa (\vec{a} \cdot \nabla) u - \mu \Delta u = f \quad \text{on } \Omega \times [0, T],$$

the initial condition

$$u(x,0)=u_0(x)$$

for every $x \in \Omega$, and the boundary conditions

u = 0 on $\Gamma_D \times [0, T]$

and

$$\mu \frac{\partial u}{\partial n} = \alpha (g - u) + q \quad \text{on } \Gamma_N \times [0, T],$$

with $\Gamma_D \cup \Gamma_N$ giving the boundary of body Ω . If the case is transient it involves the initial state u_0 , the source data f, g, q and α , material parameters ρ , κ and μ , and the vector field \vec{a} .

Find a sufficiently smooth $u \in X$ such that

$$\int_{\Omega} \rho \frac{\partial u}{\partial t} v \, d\Omega + \int_{\Omega} \kappa (\vec{a} \cdot \nabla) u v \, d\Omega + \int_{\Omega} \mu \nabla u \cdot \nabla v \, d\Omega + \int_{\Gamma_N} \alpha u v \, dS$$
$$= \int_{\Omega} f v \, d\Omega + \int_{\Gamma_N} \alpha g v \, dS + \int_{\Gamma_N} q v \, dS$$

for any $v \in X$. The right choice of the solution space X generally depends on the PDE model considered. Here we take $X \subset H^1(\Omega)$ so that X contains square-integrable functions over Ω whose all first partial derivatives also are square-integrable.

Finite element approximation

Divide Ω into finite elements and introduce a set of mesh dependent finite element basis functions ϕ_i such that

 $X_h = \operatorname{span}\{\phi_1, \phi_2, \dots, \phi_N\} \subset X$. The approximate solution is then sought from the space X_h as a linear combination of the basis functions and determined from a finite-dimensional version of the weak formulation.

$$u_h = \sum_{i=1}^N u_i \phi_i \quad (u_i \in \mathbb{R})$$

such that

$$\int_{\Omega} \rho_h \frac{\partial u_h}{\partial t} v_h d\Omega + \int_{\Omega} \kappa_h (\vec{a}_h \cdot \nabla) u_h v_h d\Omega + \int_{\Omega} \mu_h \nabla u_h \cdot \nabla v_h d\Omega + \int_{\Gamma_N} \alpha_h u_h v_h dS$$
$$= \int_{\Omega} f_h v_h d\Omega + \int_{\Gamma_N} \alpha_h g_h v_h dS + \int_{\Gamma_N} q_h v_h dS$$
for any $v_h \in X_h$.

Discrete system

Inserting the ansatz we get

$$M\frac{\partial U}{\partial t} + KU = F$$

with matrices in the body defined as

$$M_{ij} = \int_{\Omega} \rho_h \phi_j \phi_i \, d\Omega$$

$$K_{ij} = \int_{\Omega} \kappa_h (\vec{a}_h \cdot \nabla) \phi_j \phi_i \, d\Omega + \int_{\Omega} \mu_h \nabla \phi_j \cdot \nabla \phi_i \, d\Omega$$

$$F_i = \int_{\Omega} f_h \phi_i \, d\Omega$$

and for the boundary as

$$K_{ij} = \int_{\Gamma_N} \alpha_h \phi_j \phi_i \, dS$$

$$F_i = \int_{\Gamma_N} \alpha_h g_h \phi_i \, dS + \int_{\Gamma_N} q_h \phi_i \, dS, \quad \text{and } f_h = 0 \text{ for } f_h =$$

Numerical Integration

The global matrices is the sum of elemental matrices, for example the mass matrix, $M = \sum M^{E}$. To evalute the elemental matrix

$$\mathcal{M}_{ij}^{\mathcal{E}} = \int\limits_{\mathcal{E}}
ho_h \psi_j \psi_i \, d\Omega$$

we integrate over a fixed reference element \hat{E} . Given an element mapping $f_E: \hat{E} \to E$, the elemental mass matrix is given as

$$M_{ij}^{E} = \int_{\hat{E}} \rho_{h}(f_{E}(\hat{x})) \psi_{i}(f_{E}(\hat{x})) \psi_{j}(f_{E}(\hat{x})) |J_{E}(\hat{x})| d\hat{\Omega}$$

where $|J_E|$ is the determinant of the Jacobian matrix of f_E . The integral over the reference element is computed numerically with Gaussian quadrature, so that

$$M_{ij}^{E} = \sum_{k=1}^{N_{G}} w_{k} \rho_{h}(f_{E}(\hat{x}_{k})) \psi_{i}(f_{E}(\hat{x}_{k})) \psi_{j}(f_{E}(\hat{x}_{k})) |J_{E}(\hat{x}_{k})|$$

where \hat{x}_k are the integration points and w_k are the integration weights.

In the numerial integration we need to evalute input parameters at the integration points. We use classic Lagrange interpolation basis functions λ_i , $i = 1, \ldots, n$, to interpolate nodal values at the integration point.

For example, to write the expansions

$$f_h = \sum_i^n f_i \lambda_i, \quad \rho_h = \sum_i^n \rho_i \lambda_i$$

corresponding to the source data f and the material parameter ρ with the nodal values f_i and ρ_i .

Implicit time discretization with high-level library functions is usually applied in Elmer. For example, in the case of the backward Euler method, we approximate

$$\frac{\partial U}{\partial t} \approx \frac{U^{n+1} - U^n}{\Delta t},$$

where Δt is the time step size for advancing from time $t = t^n$ to $t^{n+1} = t^n + \Delta t$. Using this for time-discretization the final linear algebra problems yields,

$$(\frac{1}{\Delta t}M + K)U^{n+1} = F + \frac{1}{\Delta t}MU^n$$

where U^{n+1} contains the coefficients in the finite element solution, while M and K are referred to as the mass matrix and stiffness matrix, and F is the right-hand side vector.

- If strong nonlinearities are present the may be linearized. Here fixed point iteration is assumed.
- Integration of global matrices is done element-wise
- Local contributions are glued to the global matrices.
- The Dirichlet conditions are applied after assembly by manipulating the matrix.

