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Abstract

We analyze filename-based privilege escalation attacks,
where an attacker creates filesystem links, thereby “trick-
ing” a victim program into opening unintended files.
We develop primitives for a POSIX environment, provid-
ing assurance that files in “safe directories” (such as
/etc/passwd) cannot be opened by looking up a file by
an “unsafe pathname” (such as a pathname that resolves
through a symbolic link in a world-writable directory). In
today’s UNIX systems, solutions to this problem are typ-
ically built into (some) applications and use application-
specific knowledge about (un)safety of certain directories.
In contrast, we seek solutions that can be implemented in
the filesystem itself (or a library on top of it), thus providing
protection to all applications.

Our solution is built around the concept of pathname
manipulators, which are roughly the users that can influ-
ence the result of a file lookup operation. For each user, we
distinguish unsafe pathnames from safe pathnames accord-
ing to whether or not the pathname has any manipulators
other than that user or root. We propose a safe-open
procedure that keeps track of the safety of the current path-
name as it resolves it, and that takes extra precautions while
opening files with unsafe pathnames. We prove that our so-
lution can prevent a common class of filename-based privi-
lege escalation attacks, and describe our implementation of
the safe-open procedure as a library function over the
POSIX filesystem interface. We tested our implementation
on several UNIX variants to evaluate its implications for
systems and applications. Our experiments suggest that this
solution can be deployed in a portable way without break-
ing existing systems, and that it is effective against this class
of pathname resolution attacks.

∗This work was supported in part by the Department of Homeland Se-
curity under grant FA8750-08-2-0091.

1. Introduction

In this work we take another look at the problem of
privilege escalation via manipulation of filesystem names.
Historically, attention has focused on attacks against priv-
ileged processes that open files in directories that are
writable by an attacker. One classical example is email
delivery in the UNIX environment (e.g., [9]). Here,
the mail-delivery directory (e.g., /var/mail) is often
group or world writable. An adversarial user may use
its write permission to create a hard link or symlink at
/var/mail/root that resolves to /etc/passwd. A
simple-minded mail-delivery program that appends mail to
the file /var/mail/root can have disastrous implica-
tions for system security. Other historical examples involve
privileged programs that manipulate files under the world-
writable /tmp directory [11], or even in a directory of the
attacker’s choice [10].

Over time, privileged programs have implemented safety
mechanisms to prevent pathname resolution attacks. These
mechanisms, however, are tailored specifically to the pro-
gram’s purpose, are typically implemented in the program
itself, and rely on application-specific knowledge about the
directories where files reside. We believe, however, that the
application is fundamentally the wrong place to implement
these safety mechanisms.

Recent vulnerability statistics support our position. The
US National Vulnerability Database [16] lists at least 177
entries, since the start of 2008, for symlink-related vulnera-
bilities that allow an attacker to either create or delete files,
or to modify the content or permissions of files. No doubt,
the vast majority of these entries are due to application writ-
ers who simply were not aware of the problem. However,
there are even vulnerabilities in system programs, which
are typically better scrutinized. For example, an unsafe
file open vulnerability was reported in the inetd daemon
in Solaris 10 [12] when debug logging is enabled. This
daemon runs with root privileges and logs debug mes-
sages to the file /var/tmp/inetd.log if that file ex-
ists. The file is opened using fopen(DEBUG LOG FILE,



"r+"). Since /var/tmp is a world writable directory
a local unprivileged user can create a link to any file on
the system, and overwrite that file as root with inetd
debug messages. A similar example, related to unsafe
unlink operation, is a reported vulnerability in the Linux
rc.sysinit script [13] in the initscripts package
before version 8.76.3-1. That vulnerability could be used
by unprivileged users to delete arbitrary files by creating
symbolic links from specific user-writable directories.

In addition to these examples, experiments that we run
in the course of this work uncovered a number of (latent)
privilege escalation vulnerabilities, where system processes
write or create files as root in directories that are writable
by unprivileged system process. In these cases, a com-
promise of the unprivileged system process could result in
further privilege escalation. These vulnerabilities are de-
scribed in Section 5.3.

These examples demonstrate that it is unrealistic to ex-
pect every application (or even every “important applica-
tion”) to implement defenses against these attacks. We con-
tend that a system-level safety net would be more effective
at stopping these problems than trying to fix every affected
application, or trying to educate current and future gener-
ations of application writers. In a world where applica-
tions (and their fragments) are used in environments that
are vastly different from what the application designers had
in mind, it is unreasonable to expect that the applications
themselves will distinguish between files that are safe to
open and ones that are not.

In this work we seek a general-purpose mechanism that
can be implemented in the file system or in a system library,
that allows programs to open files that exist in an “unsafe”
environment, knowing that they will not be “tricked” into
opening files that exist in a “safe” environment. Specifi-
cally, we show how such a mechanism can be implemented
over POSIX filesystems.

In a nutshell, our solution can be viewed as identifying
“unsafe subtrees” of the filesystem directory tree, and tak-
ing extra precautions whenever we visit any of them during
the resolution of a pathname. Roughly, a directory is unsafe
for a certain user if anyone other than that user (or root)
can write in it. Our basic solution consists of resolving a
pathname component by component, enforcing the condi-
tions that once we visit an unsafe node, in the remainder
of the path we will no longer follow symbolic links or al-
low pathname elements of ‘..’, nor will we open a file that
has multiple hardlinks. Thus, once we resolve through an
unsafe node, we will not visit nodes that exist outside the
subtree rooted at that node.1

In contrast with many prior works on filename-based at-
tacks, our work is not primarily focused on race conditions

1We describe in Section 6.1 a more permissive variant that still provides
the same protection against privilege-escalation attacks.

(such as access/open races [20, 4]). Rather, we directly ad-
dresses the privilege-escalation threat, which is the main
motivation for many of these attacks. Here we focus on the
pathname resolution mechanism, identify a simple security
property that can be met even in the presence of race con-
ditions, and show that this property can be used to prevent
privilege-escalation attacks.

1.1. Our contribution

We focus on tightening the connection between files and
their names. In most filesystems, programs access files by
providing names (the pathnames), and rely on the filesys-
tem to resolve these names into pointers to the actual files
(the file handles). Unfortunately, the relation between files
and their names in POSIX filesystems is murky: Files can
have more than one name (e.g., due to hard or symbolic
links), these names can be changed dynamically (e.g., by
renaming a directory), filename resolution may depend on
the current context (e.g., the current working directory), etc.
This murky relation obscures the semantics of the name-to-
file translation, and provides system administrators and ap-
plications writers with ample opportunities to introduce se-
curity vulnerabilities. Our solution builds on the following
concepts:

• Ignoring the partition to directories and subdirectories,
we view the entire path as just one name and examine
its properties. We introduce the concept of the ma-
nipulators of a name, which roughly captures “anyone
who can change the outcome of resolving that name.”
In POSIX filesystems, the manipulators of a path are
roughly the users and groups that have write permis-
sion in any directory along this path. More precisely,
U belongs to the manipulators of a name if the reso-
lution of that name visits any directory that is either
owned by U or that U has write permissions for.

• Using the concept of manipulators, we distinguish be-
tween safe names and unsafe names. Roughly, a name
is safe for some user if only that user can manipu-
late it. Specializing this concept to UNIX systems,
we call a name “system safe” if its only manipula-
tor is root, and call it “safe for U” if the only ma-
nipulators of it are root and U. For example, typi-
cally the name /etc/passwd is “system safe”, the
name /home/joe/mbox is safe for user joe, and
the name /var/mail/jane is not safe for anyone
(as /var/mail is group or world writable).

• Once we have safe and unsafe pathnames, we can state
our main security guarantee. We provide a procedure
safe-open that ensures the following property:



If a file has safe names for user U, then
safe-open will not open it for U using
an unsafe name.

As we show in the paper, this property can be used to
ensure that no privilege escalation via filesystem links
occurs. For example, if /etc/passwd is system-
safe, then no process running as root will safe-open
this file due to a hard link or symbolic link that could
have been created by a non-root process. In particu-
lar, a “simple minded” mail delivery program that uses
our safe-open will be protected against the attack
in the example from above. Also, we verified that
this guarantee is sufficient to protect against the doc-
umented vulnerabilities in CVE.

We implemented our safe-open procedure as a li-
brary function over POSIX file systems, and also general-
ized it to other POSIX interfaces that resolve pathnames
such as safe-unlink, safe-chmod, etc. (cf. Sec-
tion 4). We performed whole-system measurements with
several UNIX flavors, and find that system-wide safe path-
name resolution can be used without ”breaking” real soft-
ware. During these measurements we also uncovered a
number of new (latent) vulnerabilities (cf. Section 5.3), that
would be fixed using our safe-open.

We mention that our work on safe pathname resolution
was done in the context of a more general framework. In
a companion paper [6] we describe an abstract filesystem
interface where file operations are permitted only on the
names with which the file was created. We then describe
an implementation that uses the safe resolution procedure
described in this paper, and formally prove that it realizes
the abstract filesystem interface. (That formal proof is car-
ried out in the framework of “universal composability” [5],
which is used in cryptography to prove that a system real-
izes its specifications in all adversarial settings.)

1.2. Related Work

Much of the prior work on pathname safety has focused
on time-of-check/time-of-use race vulnerabilities (TOCT-
TOU) in privileged programs [1, 2, 8, 3, 20, 4]. Our work
is not focused on this problem, instead it directly addresses
the privilege-escalation issue that underlies many of these
race-condition vulnerabilities: Rather than trying to prevent
race conditions, we modify the name-resolution procedure
to ensure that privilege-escalation cannot happen even if an
attacker is able to induce race conditions.

In early analysis of filesystem race vulnerabilities in
privileged programs, Bishop discusses safe and unsafe path-
names, and introduces a can-trust library function that
determines whether an untrusted user could change the
name-to-object binding for a given pathname [1]. Later,

a more formal analysis with experimental validation was
done by Bishop and Dilger [2].

Our safe-open function implements a user-level
pathname resolver that examines pathname elements one
by one; its structure is therefore similar to that of the
access-open function by Tsafrir et al. [20, 21]. While
their user-level name resolver applies access checks to each
path element in a manner that defeats race attacks, our
safe-open function is not primarily concerned with ac-
cess checks. Instead, we apply a “path safety” check to each
path element.2

In the context of system call introspection monitors for
TOCTTOU vulnerabilities, Garfinkel [14] considered reme-
dies which could also potentially apply to the problem of
unsafe pathname resolution. These remedies include dis-
allowing the creation of symlinks to files which the call-
ing process does not have write permissions to, as well as
denying access to files through symlinks. As noted in his
paper, these solutions can mitigate the problem but they do
not solve it. For instance, they do not address pre-existing
symlinks, and fail in the face of symlinks in intermediate
components of the pathnames. In contrast, our solution di-
rectly addresses the underlying problem of unsafe pathname
resolution.

Another approach to system call introspection is imple-
mented in the Plash sandboxing system [18]. Here, a re-
placement C library delegates file-system operations to a
fixed-privilege, user-level, process that opens files on behalf
of monitored applications and that enforces a confinement
policy. While this approach provides great expressiveness,
it would not be suitable for system-wide deployment as en-
visaged with our safe-open function. (For example it
is not clear how to address privilege changes by the call-
ing process, or how this solution scales with the number of
processes.)

Addressing filename manipulations is in some ways
complementary to dealing with the “confused deputy” prob-
lem: Both problems are used as a vehicle for privilege esca-
lation, and some aspects of the solution are common, but
the problems themselves appear to be different: For ex-
ample, the “simple minded” mail-delivery program from
above knows that it uses its root privileges for writing
/var/mail/root, so in this sense it is not a confused
deputy (since it is not being tricked into using some extra
privilege that it happens to hold). The problems with UNIX
privilege-managing functions were systematically analyzed
by Chen, Wagner and Dean; these authors also provide a
more rational API for privilege management [7]. Their ap-
proach was later extended by Tsafrir, Da Silva and Wagner

2Our solution could have been implemented using a variant of the gen-
eral framework from [21, Sec. 7], but that variant would have to be con-
siderably more complex to deal with issues such as change of privileges or
permissions, thread safety, etc.



to include also group privileges [19].
Mazieres and Kaashoek advocate a better system call

API that among others allows processes to specify the cre-
dentials with each system call [15]. Our safe-open
function could benefit from such features (especially when
opening files on behalf of setgid programs, cf. Sec-
tion 6.3).

2. Names, Manipulators, and Safe-Open

For presentation simplicity, we initially consider only a
simplified setting where (a) all filenames are absolute paths,
(b) every filesystem is mounted only once in the global
name tree, and (c) no concurrency issues are present. (The
last item means that we simply assume that no permission
changes occur concurrently with our name resolution pro-
cedure.) We discuss relative pathnames at the end of this
section, multiple mount points and dynamic permissions are
discussed in Section 3.

2.1. Names and Their Manipulators

Roughly speaking, a manipulator of a name is any entity
that has filesystem permissions that can be used to influ-
ence the resolution of that name. A manipulator can create a
name (i.e., cause the filesystem to resolve that name to some
file), delete it (causing name resolution to fail) or modify it
(causing the name to be resolved to a different file). In the
context of POSIX systems, a manipulator of a path in a
POSIX filesystem is any uid that has write permission in
— or ownership of — any directory that is visited during
resolution of that path.3

For example, consider the files /etc/passwd,
/home/joe/mbox, and /tmp/amanda/foo from a
common UNIX system. The permissions of the relevant
directories are:

drwxr-xr-x root root /
drwxr-xr-x root root /etc
drwxr-xr-x root root /home
drwx------ joe joe /home/joe
drwxrwxrwt root root /tmp
drwxr-xr-x root root /tmp/amanda

Then the only manipulator of the name /etc/passwd is
root (since only root can write in either / or /etc/),
and the manipulators of the name /home/joe/mbox are
root and joe. On the other hand, all the users on that
machine are manipulators of /tmp/amanda/foo, since
everyone can write in /tmp.4 Moreover, if we had the sym-
bolic links:

3See Section 6.3 for a discussion about gids.
4The directory /tmp typically has the sticky bit set, which prevents

non-root users from removing other user’s files from /tmp. But it
does not prevent users from moving other user’s files into /tmp. For
this reason, everyone must be considered a manipulator of the direc-

/home/joe/link1 -> /etc/passwd
/home/joe/link2 -> /tmp/amanda

then the manipulators of the name /home/joe/link1
are root and joe, and the manipulators of the name
/home/joe/link2/foo include all the users on that
machine (since resolution of this last name goes through
the world-writable /tmp).

We note that this description is “static”, in that it refers
to the permission structure as it exists at a given point in
time. Nonetheless, in Section 3.2 we show that our solu-
tion (which is based on this “static” notion) prevents privi-
lege escalation via pathname manipulations even in settings
where the filesystem (and its permissions) can change in
a dynamic fashion. Roughly speaking, this is because in
POSIX systems only manipulators of a path can add new
manipulators to it, and no manipulator can remove itself
from the set of manipulators of a path.5

Safe and unsafe names. For POSIX systems, we say that
a name is system-safe (or safe for root) if root is the only
manipulator of that name. A name is safe for some other
uid if its only manipulators are root and uid. Otherwise
the name is unsafe.

2.2. The Safe-Open Procedure

Our safe-open procedure is a refinement of the safety
mechanisms used by the Postfix mail system [22] to open
files under the world-writable directory /var/mail. The
basic approach taken by Postfix is to verify that the opened
file is not a symbolic link and does not have multiple
hard links. This approach works for the special case of
/var/mail, but it is not quite applicable as a general-
purpose policy, for two reasons:

It is too strict. There are cases where applications have a
legitimate need to open a file with multiple hard links
or a symbolic link.6 Moreover, blanket refusal to open
files with multiple hard links would enable an easy
denial-of-service attack: simply create a hard link to
a file, and no one will be able to open it.

It is not strict enough. Refusing to open links does not
provide protection against manipulation of higher-up
directories. For example, consider a program that tries
to open the file /tmp/amanda/foo. Even if this file

tory /tmp/amanda, even though this directory can be removed only by
root.

5The last statement depends on the fact that only root can use the
chown system call.

6For example, old implementations of Usenet news kept a different di-
rectory for every newsgroup and a different file for every article, and when
an article was sent to more than one group, then it will be stored with
multiple hard links, one from each group where this article appears.



does not have multiple links, it may still not be safe to
open it: For example, the attacker could have created
/tmp/amanda/ as a symbolic link to /etc, and the
program opening /tmp/amanda/foo will be open-
ing /etc/foo instead.

To implement a general-purposesafe-open, we there-
fore refine these rules. Our basic procedure is as follows:
While resolving the name, we keep track of whether the
path so far is safe or unsafe for the effective uid of the
calling process. When visiting a directory during name res-
olution, we call it unsafe if it is group- or world-writable,
or if its owner is someone other than root or the current
effective uid of the calling process (and otherwise we call
it safe). When resolving an absolute path, we start at the
root in safe mode (if the root directory is safe). As long
as the resolver only visits safe directories, we are in a safe
mode, can follow symbolic links or ‘..’, and can open files
with multiple hard links. However, once the resolver visits
an unsafe directory, we switch to unsafe mode, and in the
remainder of the path, disallow symbolic links or ‘..’, and
refuse to open a file with multiple hard links.7 We note the
following about this solution:

• A safe name that can be opened by POSIX open will
also be opened by safe-open: If a name is safe then
the safe-open procedure will visit only safe direc-
tories, and therefore will not abort due to symlinks or
multiple hardlinks. Any directory that is visited dur-
ing name resolution in open will also be visited by
safe-open, and the file will eventually be opened.

• A file with only one name (which can be opened by
POSIX open) will be opened by safe-open: This
is similar to the previous argument, if the file has just
one name then this name cannot include symbolic links
and the file cannot have multiple hard links. Hence
safe-open will succeed in opening it if POSIX
open does.

• For a file with multiple unsafe names, each of these
names may or may not be opened by safe-open.
Note that if many names point to the same file, then
there must be “merge points” where either we have a
symbolic link pointing to a directory (or to the file)
or multiple hard links pointing to this file. When
safe-open resolves these names, it agrees to follow
these “merge points” if it visited only safe directories
before they occur, and refuses to follow them if it vis-
ited an unsafe directory.

For one example, safe-open will agree to open the
unsafe name /home/joe/link2/foo from Sec-
tion 2.1 when running with effective uid of joe,

7See Section 6.1 for more permissive variants of this procedure.

since the “merge point” occurred while visiting the di-
rectory /home/joe/, still in a safe mode. On the
other hand, safe-openwill refuse to open this name
when running with effective uid of root, since the
directory /home/joe/ is not safe for root.

Implementing this safe-open procedure in the filesys-
tem itself (i.e., in the kernel) should be straightforward: All
we need is to add a check for permissions and ownership
on every directory, updating the safety flag accordingly. Ar-
guably, this is the preferred mode of implementation, but
it requires changes to existing filesystems. Alternatively,
we describe an implementation of safe-open as a library
function in user space. This implementation roughly fol-
lows the procedure of Tsafrir et al. [20, 21] for user-level
name resolution, but adds to it the safe-mode vs. unsafe-
mode behavior as described above. We discuss this imple-
mentation in Section 4.

Relative paths and openat. The procedure for resolv-
ing relative paths (or for implementing openat) is essen-
tially the same as the one for absolute paths, except that we
need to know if the starting point (e.g., the current working
directory) is safe or not. In a kernel implementation, it is
straightforward to keep track of this information by adding
flags to the handle structure. Some care must be taken in
situations where the directory permissions change (e.g., via
chmod or chown) or when the privileges of the current
process change, but no major problems arise there. Keep-
ing track of this information in a library implementation is
harder, but even there it is usually possible to get this in-
formation, and reasonable defaults can be used when the
information is unavailable (e.g., after an exec call). We re-
fer to Appendix A for more details about relative paths and
openat.

3. Our Security Guarantee

Recall the security guarantee that we set out to achieve:

If a file has names safe for user U, then safe-open
will not open it for U using an unsafe name.

In other words, if a file has both safe and unsafe names,
then safe-open should fail on all the unsafe names. (At
the same time it succeeds on all the safe names, as noted
above.) We note again that as stated, this guarantee applies
only to a static-permission model, where permissions and
ownership of directories do not change during the name res-
olution. However, as we discuss at the end of this section,
protection against privilege escalation attack is ensured even
when the attacker makes arbitrary permission changes for
directories that it owns. The only thing that we must assume



is that non-adversarial entities do not induce a permission-
change race against our name resolution.8 Our analysis be-
low also assumes that each directory tree appears only once
in the file system tree (i.e. no loop-back mounts, etc.), and
that each directory has at most one parent (i.e., one hard link
with a name other than ‘.’ or ‘..’).9 A short discussion of
mount points can be found later in this section.

We now turn to proving this security guarantee. Con-
sider a file that has both safe and unsafe names (for a spe-
cific uid), fix one specific unsafe name, and we show that
safe-open must fail when it tries to open that name (on
behalf of a process with this effective uid). We distinguish
two cases: either the file has just one hard link, or it has
more than one.

• Case 1: more than one hard link. Note that when
safe-open is called with the unsafe name, it will
apply name resolution while checking the safety of the
name as it resolves it. As the resolution of this name
goes through a directory which is unsafe for this uid,
then safe-open will arrive at the last directory in
this name resolution in unsafe mode (assuming that it
arrives there at all). Since the file has more than one
hard link, safe-open will then refuse to open it.

• Case 2: exactly one hard link. In this case, there is a
single path from the root to this file in the directory tree
(i.e. we exclude names that contain symbolic links).
Below we call this the “canonical path” for this file
and denote it by /dir1/dir2/.../dirn/foo.

Clearly, every pathname that resolves to this file must
visit all the directories on the canonical path. (More-
over, the last directory visited in every name resolu-
tion must be dirn, since it holds the only hard link to
foo.) Since we assume that the file has safe names for
uid, it follows that all the directories in this canonical
path must be safe for uid.

Consider now the directories visited while resolving
the unsafe name. Being unsafe, we know that the res-
olution of this name must visit some unsafe directory,
and that unsafe directory cannot be on the canonical
path. Therefore, during the resolution of an unsafe
name, safe-open must visit some unsafe directory
(and therefore switch to unsafe mode) before arriving
at the final directory dirn.

Consider the last directory not on the canonical path
that was visited while resolving this unsafe name. We

8The distinction between adversarial and non-adversarial entities is in-
herent in privilege-escalation attacks, since one must distinguish between
privileges held by the attacker and those held by the victim(s).

9Nearly all contemporary POSIX implementations either do not al-
low processes to create additional hard links to directories (e.g., FreeBSD,
Linux) or restrict this operation to the super-user (e.g., Solaris, HP-UX). A
notable exception is MacOS.

call this directory dir0. Then it must be the case that
safe-open switched to unsafe mode when visiting
dir0 or earlier (because after dir0 it only visited
safe directories). Now, since the canonical path begins
with the root ’/’, then safe-open could not descend
into the canonical path from above. Hence moving
from dir0 to the next directory was done either by
following a symbolic link or by following ‘..’, but
this is impossible since safe-open does not follow
symbolic links or ‘..’ when in unsafe mode.

This completes the proof of our security guarantee.

Multiple mount points. We note that all the arguments
from above continue to hold even when a filesystem is
mounted at multiple points in the global name space, as
long as all the mount points are system-safe. However, our
security guarantee breaks if we have the same filesystem
mounted in several directories, some safe and others not. In
this case, going down a “canonical” unsafe name for a file,
we have no way of knowing that the same file also have a
safe name (via a different mount point). The same problem
arises when parts of the filesystem are exposed to the out-
side world, e.g., via NFS. In this case, what may appear as
a safe directory to a remote user may be unsafe locally (or
the other way around).

3.1. Using the Security Guarantee to Thwart Privi-
lege Escalation

The security guarantee that we proved above provides
one with an easy way of creating files that applications
cannot be “tricked” into opening using adversarial links:
Namely, create the file with a safe name. For example, if
the name /path-to/foo is system safe, then no process
running as root can use safe-open to open the same
file with a name that includes a link that was created (or
renamed, or moved to its current location) by a non-root
user. This is because such a link would have to be created in
(or moved to) an unsafe directory, making the name unsafe
and causing safe-open (running as root) to fail on it.

This observation can be used to defeat privilege esca-
lation attacks. Consider a file that needs to be protected
against unauthorized access (where access can be read,
write, or both). Hence the file is created with restricted ac-
cess permissions. To ensure that this protection cannot be
overcome by the attacker creating adversarial links, we cre-
ate this file with a name that is safe for all the uids that have
access permission for it. (That is, if only one uid has ac-
cess permission to the file then the name should be safe for
that uid, and otherwise the name should be system-safe.)

We now claim that an attacker that cannot access the
file, also cannot create a link that would be followed with



safe-open by anyone with access permission for this file.
Note that the attacker must have a different uid than any-
one who can access the file.10 Hence a directory where the
attacker can create a link must be unsafe for anyone who can
access the file, and therefore safe-open will not follow
links off that directory.

3.2. Dynamic Permissions

The argument above covers the static-permission case,
where permissions for directories do not change during the
execution of safe-open. We now explain how it can be
extended to the more realistic dynamic-permission model.

Consider a potential privilege-escalation attack, where
an attacker that cannot access a certain file tries to cause a
victim program to access that file on its behalf. Notice that
in this scenario it must be the case that the attacker does
not have root privileges, and also has a different effective-
uid than the victim. (Otherwise no privilege escalation is
needed — the attacker could access the file by itself.10)

Consider now a file F that can be accessed by the
effective-uid of the victim (denoted by U ) but not by the
effective-uid of the attacker (denoted by U

′), consider a
particular execution of safe-open by the victim, and as-
sume that:

(a) at the time that the procedure is invoked, the file F has
some name that is safe for U , and that name remains
unchanged throughout the execution, and

(b) the pathname argument to safe-open is not a U -safe
name for the file F when the procedure is invoked.

Under these conditions, we show that this safe-open
procedure will not open the file F , barring a concurrent
filesystem operation by root or U on pathname elements
that safe-open examines. Put in other words, the at-
tacker can only violate our security guarantee if it can in-
duce a race condition between two non-adversarial pro-
cesses (i.e., the safe-open procedure and another process
with uid of either the victim or root). Assume therefore
that these two conditions hold, and in addition

(c) neither root nor U did any concurrent filesystem op-
eration on any pathname element examined by this
safe-open.

We observe that any pathname element that safe-open
examines and that resides in a U -safe directory at the time
where the procedure was invoked, must remain in the same
state throughout this safe-open execution. The reason
is that being U -safe, only U and root have permissions

10See Section 6.3 for a short discussion of setgid programs.

to change anything in the directory, and by our assump-
tion (c) neither of them made any changes to that pathname
element.

Imagine now that the state of the filesystem is frozen at
the time when the safe-open procedure is invoked, and
consider the way the pathname argument to safe-open
would be resolved. We have two cases: either all the di-
rectories visited by this hypothetical name resolution are
U -safe, or some of them are not. The easy case is when
all of them are U -safe: then it must be the case that the
hypothetical name resolution does not resolve to the file F

(or else it would be a U -safe name for F , contradicting our
assumption (b)). But it is easy to show (by induction) that
the same directories will be visited also in the actual name
resolution, all of them would be in exactly the same state,
and therefore also the actual name resolution as done by
safe-open would not be resolved to F .

Assume, then, that the hypothetical name resolution
would visit some unsafe directories, and let dir0 be the
first U -unsafe directory to be visited. The same easy induc-
tive argument as above shows that all the directories upto
(and including) dir0 are also visited by the actual name
resolution. We now know that the owner of dir0 remains
the same throughout the execution of safe-open (since
by assumption (c) root did not make any changes in direc-
tories that were examined by safe-open). If the owner is
different than U and root, then safe-open will switch
to unsafe mode when it gets to dir0. If the owner is U

or root then it must be the case that the directory was
group- or world-writable when safe-open was invoked
(since it was unsafe in the hypothetical resolution), and thus
it must still be group- or world-writable when safe-open
examines it (since by our assumption (c) U and root did
not change that directory). We therefore conclude that the
hypothetical and actual name resolutions proceeded identi-
cally upto (and including) dir0, and they both switched to
unsafe mode upon visiting dir0.

In particular it implies that safe-open arrived at the
final directory in unsafe mode, so it would only open F if
F had a single hard link at the time that the procedure re-
turned. Recall now that by our assumptions (a), this single
hard link must be at the end of a U -safe pathname. But
we know that safe-open visited at least one unsafe di-
rectory, so its traversal must have merged back into the safe
pathname at some point after visiting dir0. As in the static
case, this must have happened by following a symbolic link
or ‘..’, which is a contradiction.

Preventing privilege-escalation in the dynamic setting.
Once we established the security guarantee in the dynamic
setting, we can show how to use it to prevent privilege esca-
lation even in a filesystem where permissions can change.
In addition to creating the protected files with safe names,



we also need to ensure that (a) we never reduce the write
permissions of a non-empty directory that was group- or
world-writable or chown a non-empty user directory back
to root; and (b) we do not change permissions or owner-
ship in the safe name and do not delete it while there are
still programs that have the file open.

It is not hard to see that as long as (a) and (b) do not
happen, then the conditions that we set in our dynamic-
system proof hold, and hence no privilege-escalation can
result from adversarial filesystem actions. Seeing that con-
dition (a) is really needed is also easy: indeed if the at-
tacker creates an adversarial link in a world-writable direc-
tory and then the victim chmods the directory and removes
the world-writable permission, then safe-open will hap-
pily follow the adversarial link. Demonstrating that (b) is
needed is a bit more tricky: Consider for example the file
/etc/passwd, which is only writable by root, and con-
sider the following sequence of operations:

1. Some user program P opens /etc/passwd for read
and keeps the handle,

2. The attacker creates another hard link
/var/mail/root to he same file,

3. A confused administrator deletes /etc/passwd, and

4. The mail-delivery program uses safe-open to open
/var/mail/root, and then writes into it.

Note that safe-openwill succeed under these conditions,
since now /var/mail/root is the only name for this file
(and in particular the file has only one hard link). But when
the program P goes to read from its file descriptor, it will
see the data that the mail-delivery program wrote there.

4. Implementing safe-open for POSIX
Filesystems

We implemented safe-open as a library routine over
the POSIX filesystem interface. The routine performs user-
level name resolution, similar to the routines of Tsafrir et.
al [20, 21], while adding the pathname safety check in every
directory. That is, the routine goes through each component
of the path to be opened, checks for the manipulators of
each directory, and marks a directory unsafe if it has manip-
ulators other than root and the current process’ effective
uid. Once it encounters an unsafe directory, in the remain-
der of the path, it does not follow symlinks or ‘..’, and does
not open a file with multiple hardlinks. A pseudocode de-
scription of our implementation is found in Figures 1 and 2
in Appendix B.

4.1. Race conditions

Our name-resolution procedure is not particularly vul-
nerable to filesystem-based adversarial race conditions, in
that it would correctly label safe/unsafe directories regard-
less of concurrent actions of any attacker (as long as the
euid of the attacker is neither root nor the victim’s
euid). There are only two points in our code where we
need to guard against check/use conditions:

(A) We must never open a symbolic link. If the
O NOFOLLOW flag is available then we can use it for that
purpose, but to get get the same effect in a truly portable
code we implement the lstat-open-fstat-lstat pat-
tern.

(B) The other check/use window in our code is between
the time that we check permissions and conclude that we
are in a safe directory and the time that we read a symbolic
link or open a file or directory. As we explained in Sec-
tion 3.2, this check/use window is only open to races against
processes with the same effective uid as the process call-
ing safe-open (or root), not to races against an adver-
sarial process trying to escalate privileges. As permission-
changing actions by benign processes are quite rare, we be-
lieve that this window does not pose a major threat. We can
even check the directory permissions both before and after
reading a symlink (or opening a file or directory) to further
narrow this window (and then this race cannot happen as
long as non-adversarial processes do not revoke write per-
missions on non-empty directories).

4.2. Thread safety

Implementing user-level name resolution requires that
we work with handles to directories, using either the cur-
rent working directory (which may not be thread safe) or the
openat, readlinkat and fstatat interfaces, which
are part of a recent POSIX standard [17]. These interfaces
duplicate existing pathname-based interfaces but add an-
other parameter, a file descriptor for a directory. When used
with a relative name, these calls now work relative to the
specified directory instead of the current working directory.

The new interfaces are implemented in current Solaris
and Linux versions. On systems without support for the
openat family of function calls, we emulate their func-
tionality inside a synchronized block: Maintaining a handle
to the directory currently visited, we store the current work-
ing directory, change directory with fchdir to the visited
directory, explore the next path element (for example, with
open or lstat), then restore the original current working
directory. To make the emulation signal-safe we also need
to suspend signal delivery while in the protected block.



4.3. Read permissions on directories

Our user-level safe-open implementation relies on
the ability to open all the intermediate directories (e.g., to
fstat them or to use them with openat). Each path
component, except the final one, is opened in a O RDONLY
mode. For this implementation to work, the process must
have read permission on each non-final component in the
path (in addition to the search permission that is required
to look up the next pathname component in that directory).
This is different from the regular POSIX open that only
requires search permission on each directory component.

This restriction is of only temporary nature: a recent
POSIX standard [17] introduces the O SEARCH flag to
open a directory for search operations only, and a future
safe-open implementation can migrate to this.

4.4. Opening files without side effects

Upon arriving at the last path element (i.e., the file to be
opened), our safe-open implementation may still need
to verify that it is not a symbolic link. We again use the
lstat-open-fstat-lstat pattern, but we must guard
against potential side-effects of opening the file. For in-
stance, opening the file with the flag O TRUNC in combi-
nation with either O WRONLY or O RDWR will truncate the
file before the safe-open procedure can determine that
it opened an unexpected file. To fix this problem, we must
first remove the O TRUNC flag when opening the file, and if
no error occurs then call ftruncate on the newly opened
handle before returning it.

Somewhat similarly, if safe-open unexpectedly
opens a target which is not a regular file (such as a FIFO
or a tty port), then the open call could block indefinitely.
This can be addressed only with cooperation by the applica-
tion: when an application never intends to open a blocking
target then it could specify the flag O NONBLOCK.

4.5. Implementing safe-create, safe-unlink,
and other primitives

Building on the same ideas, we can implement safe ver-
sions of other POSIX interfaces, such as safe-create
for creation of new files, safe-unlink for removing
them, etc. For many of these primitives, the implementa-
tion can be almost trivial: follow the same steps as with
safe-open to reach the final directory11; in the final step,
safe-create creates the file (with flags O CREAT and
O EXCL), and safe-unlink removes the target which
may be a symlink or a file with multiple hardlinks.

11Some primitives (such as unlink and mkdir) do not follow a sym-
link that appears as the final pathname component; the safe-unlink
and safe-mkdir functions must of course behave accordingly.

Our generalized pathname safety policy is easy enough
to express: “when resolving a pathname through an unsafe
directory, in the remainder of the path don’t follow ‘..’
or symbolic links, and don’t open or change attributes of
files with multiple hardlinks.” Articulating the exact secu-
rity properties that you get may take some care. For exam-
ple, the security property that you get from safe-create
is this: “When called with an unsafe name, safe-create
will fail to create the file if the resulting file could also have
a safe name.”

Implementing safe versions of POSIX interfaces with
more than one pathname (i.e., safe-rename and
safe-link) can be problematic on systems that don’t
support renameat and linkat. The emulation of these
functions is complicated by the fact that a process can
have only one current working directory at a time; as a
workaround one could perhaps utilize temporary directories
with random names as intermediaries.

Current POSIX standards still lack some primitives that
operate on existing files by file handle instead of file name,
but this may change as standards evolve. For example,
the recently-standardized O EXEC (open file for execute)
flag [17] enables the implementation of a family of fexec
primitives that execute the file specified by a file han-
dle.12 Based on these primitives one could implement
safe-exec versions that can recover from accessing an
unexpected file, similar in the way that safe-open recov-
ers before performing an irreversible operation. We note
that executing files in unsafe directories is a minefield, and
leave the development of a suitable safety policy as future
work.

5. Experimental validation

We conducted extensive experiments to validate our ap-
proach for safe pathname resolution. Our goals in these ex-
periments were (a) to check whether existing applications
would continue to work when they run over a POSIX inter-
face that implements safe pathname resolution; and (b) to
see if we can identify yet-undiscovered vulnerabilities re-
lated to applications that follow unsafe links.

5.1. Testing apparatus

We implemented our safe name resolution and tested
several “live” systems, to see what applications actually
use unsafe links, and for what purpose. To cover a wide
range of operating systems and production environments,
we opted for implementing our procedure in a “shim” layer
between the applications and libc. That is, we built a li-

12Support for these is already implemented in some Linux and BSD
versions.



brary that intercepts filesystem calls, and instructed the run-
time linker to load it before the regular libc. We used
this to instrument dynamically-linked programs including
setuid and setgid programs.13 This approach makes it eas-
ier to test existing systems, but it may not be able to inter-
pose on calls between functions within the same library. In
addition it is necessary to intercept some library calls not re-
lated to file access, to prevent the accidental destruction of
environment variables or file handles that our “shim” layer
depends on.

In the interposition library, we implemented the safe
pathname resolution and used it in the filesystem calls
open, fopen, creat, unlink, remove, mkdir,
rmdir, link, rename, chmod, chown, and the exec
family. With openat and related functions, we did not
implement yet safe pathname resolution with respect to ar-
bitrary directory handles; in our measurements, such calls
were a tiny minority. So far we only instrumented calls that
involve absolute pathnames, or pathname lookups relative
to the current directory.

We also kept some state related to the current working
directory in our library, in order to implement safe name
resolution for relative pathnames. (The same approach can
be used for the directory handles used by openat and re-
lated functions, but we did not implement this yet.) A more
detailed description of the implementation and its intrica-
cies is provided in Appendix C.

5.2. Measurements of UNIX systems

We ran our pathname safety measurements on several
out-of-the-box UNIX systems, specifically Fedora Core 11,
Ubuntu 9.04, and FreeBSD 7.2 for i386 (both server and
desktop versions). These systems were run on VMware
workstation 5 for Linux and Windows hosts, and on real
hardware. We instrumented the top-level system start-
up and shutdown scripts, typically /etc/rc.d/rc or
/etc/init.d/rc, and were able to monitor system and
network daemon processes as well as desktop processes.14

In all of these experiments, we configured our library to run
in a report-only mode, where policy violations are logged
but the intended operation is not aborted. (In fact, following
the complete pathname resolution, our library will simply
make the underlying system call on the original arguments
and return the result.)

13While the LD PRELOAD environment variable was sufficient to
instrument most programs, instrumenting setuid and setgid programs
required additional steps. We stored run-time linker instructions in
/etc/ld.so.preload on Linux, and in /var/ld/ld.config on
Solaris; we modified the run-time linker /libexec/ld-elf.so.1 on
FreeBSD.

14For this instrumentation, we disabled security software such as Ap-
pArmor and SELinux to avoid interference between our instrumentation
and their enhanced security policies.

We ran these systems in their out-of-the-box configu-
rations, and also tested some applications including the
Gnome desktop, browsing with several Firefox versions (in-
cluding plugins for popular multi-media formats), office
document browsing, printing with Adobe Acroread, soft-
ware compilation with gcc, and software package installa-
tion. The vast majority of these tests passed without a hitch.
Most systems and applications never attempted an operation
that would violate our safety policy, and thus they would
have worked just as well had we configured our safe name
resolution in enforcing mode. One notable exception is the
web-server application, discussed in Section 5.5.

5.3. Latent vulnerabilities

In the course of our experiments we uncovered a number
of latent privilege escalation vulnerabilities. The latent vul-
nerabilities occur where privileged system processes write
or create files as root in directories that are writable by an
unprivileged process. In these cases, a compromise of an
unprivileged process could result in further privilege esca-
lation:

• The Common UNIX Printing System (CUPS) saves
state in files job.cache and remote.cache.
These files are opened with root privileges and with
flags O WRONLY|O CREAT|O TRUNC, in directory
/var/cache/cups which is writable by group lp
(on some systems group cups). The CUPS software
uses this group when running unprivileged helper pro-
cesses for printing, notification, and more. If an un-
privileged process is corrupted, an attacker could re-
place the state files by hard or symbolic links and de-
stroy or corrupt a sensitive file.

• On Fedora Core 11, a similar latent problem exists
with files under directory /var/log/cups.

• During MySQL startup, the mysqld daemon
opens a file hostname.lower-test with flags
O RDWR|O CREAT as root, under directory
/var/lib/mysql which is owned by the mysql
user. If the mysqld daemon is corrupted later when
it runs with user mysql privileges, an attacker could
replace this file by a hard or symbolic link and corrupt
a sensitive file when MySQL is restarted.

• The Hardware Abstraction Layer daemon subsystem
opens a file with flags O RDWR|O CREAT as root, in
directory /var/run/hald. This directory is owned
by user haldaemon, who also owns several daemon
processes. Some of these processes listen on a socket
that is accessible to local users.



• The Tomcat subsystem opens a file with flags
O WRONLY|O APPEND|O CREAT as root in direc-
tory /var/cache/tomcat6. This directory is
owned by user tomcat6, who also owns a process
that provides service to remote network clients.

• On Fedora Core 11, directory /var/lock is writable
by group lock, which is also the group of a setgid
program /usr/sbin/lockdev. System start-
up scripts create “lock” files as root with flags
O WRONLY|O NONBLOCK|O CREAT|O NOCTTY.
If the lockdev program has a vulnerability, an
attacker could replace a lock file by a hard or symbolic
link and corrupt a sensitive file.

• XAMPP [24] (an integrated package of Apache,
MySQL, PHP and other components) on Linux opens
files, for error logging, as root in the directory
/opt/lampp/var/mysql which is owned by the
uid nobody. A corrupted process running as nobody
can replace this with a link to any file on the sys-
tem which would then be overwritten. We note that
XAMPP runs a number of daemons providing network
services as the nobody user, including httpd.

In all these cases, our safe name resolution would protect
the system from privilege escalation if the unprivileged pro-
cesses are corrupted.

5.4. Policy violations

During our ”whole system” tests we ran into a surpris-
ingly small number of actual safety policy violations. These
turned out to be specific to particular platforms, and were
caused by quirks in the way that directory ownership and
permissions were set up:

• On FreeBSD 7.2, the man command could trigger pol-
icy violations when a user requested a manual page.
FreeBSD stores pre-formatted manual pages under di-
rectories owned by user man (instead of root as with
many other UNIX systems). According to our policy,
these directories are unsafe for users other than man.
This resulted in policy violations with pre-formatted
manual page files that had multiple hard links.

FreeBSD adopted this approach so that pre-formatted
manual pages can be maintained by a non-root pro-
cess. This limits the impact of vulnerabilities in
document-formatting software. However, we find
the benefits of this approach dubious: document-
formatting software still runs with root privileges
when the super-user requests a manual page for soft-
ware that is not part of the base system. By default,
no pre-formatted manual pages exist for this software
category, and this is where the biggest risk would be.

• The FreeBSD package manager triggered warnings
about following ‘..’ when removing a temporary
directory tree under /var/tmp; these could be ad-
dressed by a more permissive policy (cf. Section 6.1).

• On Fedora Core 11, the Gnome desktop software trig-
gered policy violations that we did not experience with
other systems. The violations happened when a pro-
cess with gdm user and group privileges attempted
to follow symbolic links under directory /var/lib/gdm.
This directory is writable by both owner gdm and
group gdm.

These policy violations can be avoided with a more
sane configuration that uses owner gdm write permis-
sion only. Our “live” measurements show that group
gdm is used only by processes that run as user gdm.
With a single-member group like gdm, ownergdm per-
mission is sufficient, and group gdm write permission
is unnecessary. (We found similar issues with XAMPP
for Linux, which installs with directories that have
owner nobody and group rootwith group write per-
mission.)

5.5. A web-server application

Most of our measurements were done on bare-bones sys-
tems that we instantiated specifically for the purpose of run-
ning the experiments. The only production system that we
had access to was a Debian 5.0 system running an Apache
web server and some other services. On that system we
did not attempt a whole-system measurement, but instead
only run specific services under our measurement appara-
tus. Also on that system most services did not report any
policy violations, with the notable exception of the web
server.

The web site on that system is managed cooperatively by
several users, where different users are responsible for dif-
ferent parts of the site, and with no attempt for any protec-
tion between these users. As a result, the web-tree is a mesh
of directories with different owners, many of them writable
by the web-administrator group (whose members in-
clude all these different users). Roughly speaking, the entire
web-tree on that system is an UNsafe subtree. Moreover,
some dynamic-content parts of the web site make heavy use
of symbolic links, e.g., for using the same script in different
contexts.

It is clear that our safe-open procedure will break this
web site, but this is more an artifact of our particular choice
of implementation than of the security guarantee that we set
out to ensure. Indeed, in Section 6.1 we describe a more per-
missive implementation of safe-open that still ensures
the same security guarantee, but would not break this web
site. (The idea is that we can follow symbolic links off un-



safe directories, as long as we ensure that the file that we
get to at the end does not have any safe names.)

5.6. Conclusions

Our experiments seem to indicate that our approach to
safe name resolution is both effective and realistic. On
one hand, it fixes all 177 symlink-related vulnerabilities re-
ported in CVE since January 2008, and also provides pro-
tection against the (latent) vulnerabilities that we identified
in our experiments. On the other hand, most systems will
continue working without a problem even if this safety mea-
sure was implemented. The few that break can be “fixed”
either by implementing a more standard permission struc-
ture for the relevant directories or by implementing the more
permissive variant of safe-open from Section 6.1.

We stress that in our experiments, we did not identify
even a single example where there is a legitimate need to
open files that would be inherently disallowed by our ap-
proach to safe name resolution.

6. Variations and Extensions

6.1. A more permissive safe-open

Our safe-open procedure does not follow symbolic
links off an unsafe directory, but is not hard to see that this
policy is more restrictive than what we really need for our
security guarantee. Indeed, we only need to ensure that
safe-open fails on an unsafe name if the file to be opened
has any other name that is safe. It turns out that a small
modification of safe-open can ensure the same security
guarantee while allowing more names to be opened.

The idea is to keep two safe/unsafe flags rather than one.
Both flags begin in a safe state and switch to unsafe state
when visiting an unsafe directory, but one flag is “sticky”,
in that once in unsafe state it stays in this state until the end
of the name resolution, while the other is reset to the safe
state whenever we are about to follow a symbolic link with
an absolute path. That is, the second flag is reset to safe
state whenever we are about to return to the root directory.

With these two flags, we can follow arbitrary symbolic
links, and can also follow ‘..’ as long as the second flag is
in safe mode. When we finally reach the file to be opened,
we abort the procedure only if (a) the “sticky” flag is in
unsafe mode and the file has more than one hard link, or (b)
the two flags have different values. (In the second case, the
“sticky” flag indicates that the given pathname was unsafe,
while the resettable flag indicates that as part of the name
resolution we followed some safe name to arrive at the file.)
The reason that this more permissive procedure works, is
that if a file with only one hard link has any safe names,
then its “canonical” name (i.e., the one with no symbolic

links) must be safe. Moreover, this name must be the one
followed by the time that the name-resolution arrives at the
file itself.

As we described it, this more permissive version still re-
fuses to follow ‘..’ when the second flag is in unsafe mode.
This can be easily remedied, however: we simply drop the
restriction on following ‘..’, and instead just reset the sec-
ond flag to safe mode after every ‘..’.

6.2. An alternative safe-open using extended at-
tributes

On some systems, a much more direct approach is
also possible. Recall that the problem that we try to ad-
dress is that an adversary without permissions to a file is
able to add names to the filesystem that resolve to that
file. If the filesystem supports extended attributes, then
we can avoid this problem simply by including with the
file an attribute that lists all the permissible names for that
file. The open procedure, after opening the file, will
look for this extended attribute, and if found it will com-
pare its pathname argument against the list of permissible
names, and will abort if there is a mismatch. For example,
the file sudo in /etc/init.d/ will have a permitted-
names attribute listing the names /etc/init.d/sudo
and /etc/rcS.d/S75sudo, and no program will ever
be able to open it using any other name.

This simple solution looks quite attractive, but it neces-
sitates proper management of the additional attribute. In
particular, we must decide who may set this attribute (and
under what conditions). For example, when we add to our
filesystem a symbolic link:

/var/spool/mail -> /var/mail

do we need to modify the permitted-name attribute in all the
files under /var/mail/? We leave all these questions to
future work.

6.3. Group permissions

Recall that our safe-open procedure only uses uids
to determine safety of directories, which means in particular
that we treat two processes with the same uid as equal and
do not try to protect one from the other. This leaves open the
possibility of privilege escalation by acquiring group priv-
ileges: namely, an adversarial process may try to trick an-
other process with the same effective uid but more group
privileges into opening a file that the adversarial process it-
self cannot open.

In the work we do not try to protect against such at-
tacks, indeed protection between different processes with
the same effective uid is virtually impossible in most
POSIX systems. We mention that it is not hard to change the



safe-open procedure itself so that it considers the gid
rather than the uid for the purpose of determining direc-
tory safety, but this would require a change in the interface,
since the calling application would need to somehow indi-
cate that it wants to use this gid-based safety check instead
of the default uid-based check.

We note that our approach for safe name resolution is
quite coarse with respect to group permissions, in that group
write permissions always make a directory unsafe for ev-
eryone. This is justified when the directory gid is the pri-
mary or secondary gid of multiple UNIX accounts, since
multiple accounts are manipulators. However, contempo-
rary UNIX-es have manygids that are associated with only
one uid (or maybe none at all, e.g. when the gid is only
used by the execution of a setgid program). In general we
cannot anticipate all possible ways that a gid may be ac-
tivated, and hence we consider the directory unsafe in all
these cases. This may trigger spurious policy violations in
some configurations, but in our experiments we did not find
configurations where such policy violations cannot be re-
solved.

We also note that in conjunction with the more permis-
sive variant from above, this behavior lets administrators
bypass much of our safety mechanisms: To forgo most of
our safety protections for some subtree (without otherwise
changing any permissions), it is sufficient to make the root
of that subtree writable, e.g., by the root group. Assum-
ing that only root is a member of this group, this will not
change any real permissions in the system, but will make
that entire subtree unsafe, and therefore permit opening of
the files in it also using other unsafe names, even ones with
symbolic links. (This trick does not help if there are multi-
ple hardlinks, however.)

7. Conclusion

In this paper we considered the problem of privilege es-
calation via manipulation of filesystem pathnames, which
effect name resolution in system calls such as open,
unlink, etc. While many privileged programs take mea-
sures to protect against such attacks, these measures are al-
ways very application specific. We propose a more general
approach of having safe pathname resolution as part of the
filesystem itself or a system library, thereby protecting all
applications by default.

We introduced the concept of the manipulators of a path-
name, that include anyone who can influence the outcome
of the pathname resolution. In POSIX these are the users
who either own or can write in any directory visited dur-
ing the pathname resolution. Using this concept, we call a
pathname safe for U if the only manipulators of the path-
name are root and U. We described a general routine
safe-open, ensuring that if a file has safe names then

safe-open will not open that file with an unsafe name,
and demonstrated that this guarantee can be used to thwart
filename-based privilege escalation attacks. This is useful
not only for privileged programs that run in known-to-be
hostile environments, but also for programs written by naive
developers, and programs that are being deployed in unfore-
seen environments with unexpected file permission seman-
tics.

We implemented our safe name resolution routine in a
library, using portable code over the POSIX interface, and
performed extensive experiments to validate the applicabil-
ity of our solution to current operating systems and appli-
cations. We verified that this solution uniformly protects
system against the documented cases of applications and
daemons vulnerable to pathname manipulation attacks, as
well as against some new (latent) vulnerabilities that we un-
covered. We also instrumented current versions of Ubuntu
9.04, Fedora Core 11 and FreeBSD 7.2 to run every process
through a program which interposes calls to file manipula-
tion and related calls and checks if the corresponding oper-
ation manipulates a safe pathname. These experiments con-
firmed that very few existing systems break when used over
our safe name resolution, and the handful of cases where
our solution produces false positives can be handled either
by implementing a more standard permission structure for
the relevant directories or by using a more permissive vari-
ant of our solution.
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A Relative pathnames

When resolving a pathname relative to an initial direc-
tory (i.e. the current directory or a directory handle with
functions such as openat), the resolver needs to determine
if the initial directory is safe, before following the same
steps as with absolute pathnames (Section 2.2). For this, the
implementation needs to maintain safety information about
directory handles, including the implicit directory handles
for the current and root directories of all processes.

The per-handle safety information needs to be initial-
ized when a directory handle is instantiated with functions
such as open, chdir or chroot, and the safety infor-
mation needs to be propagated when a directory handle is
copied with functions such as dup, fcntl, fork, or with
functions that transmit a file handle over an inter-process
communication channel. Maintaining this information is
straightforward in the file system itself (i.e. in the oper-
ating system kernel). We discuss our user-level approach in
Appendix C.

In a simplistic implementation, each directory handle has
a static flag that indicates if the directory is safe. How-
ever, additional care is needed with processes that change
their effective uid (for example, a process that invokes the
seteuid function, or a process that executes a file with
the setuid bit turned on). As the result of an effective uid
change, a directory that was safe may become unsafe or vice
versa. As a further complication, the safety of a directory
depends on the program execution history. For example,
a handle for directory /etc is normally safe for every-
one, but that same directory handle would be safe only for
joe if a pathname resolved through a symbolic link under
/home/joe.

To account for processes that change execution privilege,
we propose that each directory handle would include a field
specifying the uid that the directory’s pathname prefix was
“safe for” when the pathname was resolved. Namely, this
field will indicate root if the directory was reached via
a system-safe pathname, it will indicate a single non-root
uid if it was reached via a pathname that has only uid



/* Resolve a pathname and open the target file */

safe_open(path, open_flags, is_safe_wd)
{

if (path is absolute) {
is_safe_wd = 1; dirhandle = null;

} else {
dirhandle = open(".", O_RDONLY) or return error;

}
return safe_lookup(dirhandle, path, is_safe_wd,

lookup_flags_for_open,
open_action_func, open_flags);

}

/* Call-back to open the final pathname component */

open_action_func(dirhandle, name, is_safe_wd, open_flags)
{

truncate = (open_flags & O_TRUNC);
flags = (open_flags & ˜O_TRUNC);

filehandle = openat(dirhandle, name, flags)
or return error;

fst = fstat(filehandle) or return error;
/* lstatat(args) is local alias for

fstatat(args, AT_SYMLNK_NOFOLLOW) */
lst = lstatat(dirhandle, name) or return error;

if (fst and lst don’t match) return EACCESS;
check dirhandle permissions again,

and update is_safe_wd if unsafe;
if (!is_safe_wd && name is "..") return EACCES;
if (!is_safe_wd && fst is not a directory

&& fst has multiple hard links)
return EACCES;

if (truncate) ftruncate(filehandle,0)
or return error;

return filehandle;
}

Figure 1. The top-level safe open and a call-
back function open action func.

and root as manipulators, and it will indicate no-one if the
pathname had more than one non-root manipulator. When
resolving a pathname relative to an initial directory, one
determines the safety of the initial directory by combining
the “safe for” uid from the handle with fresh information
about the owner and writers for the initial directory itself.

B Pseudo-Code Implementation

The safe-lookup procedure described in Figure 2
implements our safe pathname resolution principle and
is the common routine used to implement safe-open,
safe-create and other safe versions of the POSIX in-
terface. The specifics of each individual function are re-
flected in the arguments lookup flags, action func
and action args. The top-level function safe open
and the corresponding parameters to safe lookup are
described in Figure 1.

/* Resolve pathname, invoke action on final component */

safe_lookup(dirhandle, path, is_safe_wd, lookup_flags,
action_func, action_args)

{
if (path is empty) return ENOENT;
if (path is absolute) {

dirhandle = open("/", O_RDONLY) or return error;
fst = result of lstat("/") or return error;
skip leading "/" in path, and replace

path by "." if the result is empty;
} else

fst =result of fstat(dirhandle) or return error;
while (true) {

/* check dirhandle permissions */
if (fst.owner not in [root, euid]

|| anyone not in [root, euid] can write)
is_safe_wd = false;

split path into first and suffix,
and replace all-slashes suffix by ".";

lst = result of lstatat(dirhandle, first)
or return error;

/* the meaning of "final pathname component" *
* depends on lookup_flags, it has different *
* meaning for open, unlink, etc. */

if (first component is final pathname component)
return action_func(dirhandle, first,

is_safe_wd, action_args);

if (first component is a symlink) {
newpath = readlinkat(dirhandle, first)

or return error;
check dirhandle permissions again,

and return EACCES if unsafe;

/* symlink at end of pathname */
if (suffix == null)

return safe_lookup(dirhandle, newpath,
is_safe_wd, lookup_flags,
action_func, action_args);

/* other symlink */
[newhandle, fst] =
safe_lookup(dirhandle, newpath, is_safe_wd,

lookup_flags, null, null)
or return error;

} else {
/* first component is not a symlink */
newhandle = openat(dirhandle,first,O_RDONLY)

or return error;
check dirhandle permissions again,

and update is_safe_wd if unsafe;

if (!is_safe_wd && name is "..")
return EACCES;

fst = result of fstat(newhandle)
or return error;

if (first component is not a directory)
return ENOTDIR;

lst = result of lstatat(dirhandle, first)
or return error;

if (lst does not match fst) return EACCES;

/* reached the end of readlinkat result */
if (suffix == null) return [newhandle, fst];

}
path = suffix;
dirhandle = newhandle;

}
}

Figure 2. The safe lookup recursive call.
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Figure 3. In-process monitor architecture.

C User-level implementation

As mentioned earlier in this paper, a kernel-based imple-
mentation of safe pathname resolution is straightforward:
while visiting each pathname element one at a time, main-
tain a safety flag and apply the safety policy for follow-
ing symbolic links, “..”, and for files with multiple hard
links as appropriate. With a kernel-based implementation,
maintaining per-handle directory safety information is also
straightforward. This approach is preferable, but only after
it has been demonstrated that safe pathname resolution does
not break well-behaved programs.

To demonstrate the feasibility of our pathname safety
policy, we chose an approach that is based on library-call
interposition with an in-process monitor. This approach
works with dynamically-linked programs, including pro-
grams that are setuid or setgid, and it provides acceptable
performance on Linux, FreeBSD and Solaris systems. We
opted against external-process monitors such as strace or
truss: they suffer from TOCTOU problems, they cause
considerable run-time overhead, and they don’t have direct
access to the monitored process’s effective uid which is
needed for pathname safety decisions.

As illustrated in figure 3, the monitor is implemented as a
library module that is loaded into the process address space
between the application and the libraries that are dynami-
cally linked into the application. Depending on configura-
tion, the monitor can log function calls such as open with
the effective uid, and can log whether or not a call vio-
lates our pathname safety policy. For the purpose of the

feasibility test the monitor does not enforce policy, but in-
stead passes control to the real open etc. function. The
in-process monitor for Linux, FreeBSD and Solaris is im-
plemented in about 2000 lines of K&R-formatted C code,
comments not included, plus a small shell script that imple-
ments the command-line interface.

Besides interposing on functions such as open that re-
quire pathname resolution, our in-process monitor inter-
poses on additional functions to ensure proper operation
of the monitor itself. For example, the monitor intercepts
function calls such as close and closefrom, to prevent
the logging file handle from being closed by accident. The
monitor intercepts function calls such as execve to en-
sure consistent process monitoring when a new program is
executed. Upon execve entry, the monitor exports envi-
ronment variables to control run-time linker behavior and
to propagate monitor state, and it resets the close-on-exec
flag on the logging file handle. When the execve call
returns in the newly-loaded program, the monitor restores
private state from environment variables before the applica-
tion’s code starts execution.

To track per-handle directory safety state, an in-process
monitor would need to interpose on functions that copy file
handles such as dup or fcntl. Interposition is not nec-
essary with process-creating primitives such as fork or
vfork, since these are not designed to share the in-kernel
file descriptor table or process memory between parent and
child processes. On the other hand, the Linux clone and
BSD rfork process-creating primitives are designed so
that they can share the file descriptor table or process mem-
ory, meaning that changes made by one process will affect
the other process. This behavior complicates a user-level
monitor implementation, and is not yet supported by our
monitor.

Our preliminary in-process monitor maintains a
safe/unsafe flag for directory handles created with open
so that it can check programs that use the open-fchdir
idiom. The monitor does not yet check lookups relative to
a directory handle. In our measurements, we found that the
openat etc. functions are used by only few programs,
and that those functions are called almost exclusively
with absolute pathnames or with pathnames relative to the
current directory. The monitor currently does not propagate
the per-process current directory and root directory safety
state across function calls such as execve. Instead, it
initializes their safety state on the fly at program start-up
time. Without modification to monitored applications, it is
not practical for a user-level monitor to track safety flags
for directory handles that are sent over an inter-process
communication channel. Fortunately, such usage is rare.


