
RFC 9442

Static Context Header Compression (SCHC) over

Sigfox Low-Power Wide Area Network (LPWAN)

Abstract

The Static Context Header Compression (SCHC) and fragmentation specification (RFC 8724)

describes a generic framework for application header compression and fragmentation modes

designed for Low-Power Wide Area Network (LPWAN) technologies. This document defines a

profile of SCHC over Sigfox LPWAN and provides optimal parameter values and modes of

operation.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9442

Standards Track

July 2023

2070-1721

JC. Zúñiga C. Gomez

Universitat Politècnica de Catalunya

S. Aguilar

Universitat Politècnica de Catalunya

L. Toutain

IMT-Atlantique

S. Céspedes

Concordia University

D. Wistuba

NIC Labs, Universidad de Chile

J. Boite

Unabiz (Sigfox)

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9442

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

Zúñiga, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9442
https://www.rfc-editor.org/info/rfc9442

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terminology

3. SCHC over Sigfox

3.1. Network Architecture

3.2. Uplink

3.3. Downlink

3.3.1. SCHC ACK on Downlink

3.4. SCHC Rules

3.5. Fragmentation

3.5.1. Uplink Fragmentation

3.5.2. Downlink Fragmentation

3.6. SCHC over Sigfox F/R Message Formats

3.6.1. Uplink No-ACK Mode: Single-Byte SCHC Header

3.6.2. Uplink ACK-on-Error Mode: Single-Byte SCHC Header

3.6.3. Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 1

3.6.4. Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 2

3.6.5. Downlink ACK-Always Mode: Single-Byte SCHC Header

3.7. Padding

4. Fragmentation Rules Examples

4.1. Uplink Fragmentation Rules Examples

4.2. Downlink Fragmentation Rules Example

5. Fragmentation Sequence Examples

5.1. Uplink No-ACK Examples

5.2. Uplink ACK-on-Error Examples: Single-Byte SCHC Header

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

5.3. SCHC Abort Examples

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Acknowledgements

Authors' Addresses

1. Introduction

The Generic Framework for Static Context Header Compression (SCHC) and Fragmentation

specification can be used in conjunction with any of the four LPWAN technologies

described in . These LPWANs have similar characteristics, such as star-oriented

topologies, network architecture, connected devices with built-in applications, etc.

SCHC offers a considerable degree of flexibility to accommodate all these LPWAN technologies.

Even though there are a great number of similarities between them, some differences exist with

respect to the transmission characteristics, payload sizes, etc. Hence, there are optimal

parameters and modes of operation that can be used when SCHC is used in conjunction with a

specific LPWAN technology.

Sigfox is an LPWAN technology that offers energy-efficient connectivity for devices at a very low

cost. Complete Sigfox documentation can be found in . Sigfox aims to provide a very

wide area network composed of Base Stations that receive short Uplink messages (up to 12 bytes

in size) sent by devices over the long-range Sigfox radio protocol, as described in . Base

Stations then forward messages to the Sigfox Cloud infrastructure for further processing (e.g., to

offer geolocation services) and final delivery to the customer. Base Stations also relay Downlink

messages (with a fixed 8-byte size) sent by the Sigfox Cloud to the devices, i.e., Downlink

messages are being generated when devices explicitly request these messages with a flag in an

Uplink message. With SCHC functionalities, the Sigfox network offers more reliable

communications (including recovery of lost messages) and is able to convey extended-size

payloads (allowing for fragmentation/reassembly of messages) .

This document describes the parameters, settings, and modes of operation to be used when SCHC

is implemented over a Sigfox LPWAN. The set of parameters forms a "SCHC over Sigfox Profile".

The SCHC over Sigfox Profile is applicable to the Sigfox Radio specification versions up to v1.6/

March 2022 (support for future versions would have to be assessed).

[RFC8724]

[RFC8376]

[sigfox-docs]

[RFC8376]

[sigfox-spec]

[sigfox-spec]

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 3

2. Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

It is assumed that the reader is familiar with the terms and mechanisms defined in

and . Also, it is assumed that the reader is familiar with Sigfox terminology

.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8376]

[RFC8724] [sigfox-

spec]

3. SCHC over Sigfox

The Generic SCHC Framework described in takes advantage of previous knowledge of

traffic flows existing in LPWAN applications to avoid context synchronization.

Contexts need to be stored and pre-configured on both ends. This can be done either by using a

provisioning protocol, by out-of-band means, or by pre-provisioning them (e.g., at manufacturing

time). For example, the context exchange can be done by using the Network Configuration

Protocol (NETCONF) with Secure Shell (SSH), RESTCONF with secure HTTP

methods, and CoAP Management Interface (CORECONF) with the Constrained

Application Protocol (CoAP) as provisioning protocols. The contexts can be encoded in

XML under NETCONF, in JSON under RESTCONF, and in Concise Binary Object

Representation (CBOR) under CORECONF. The way contexts are configured and stored

on both ends is out of the scope of this document.

[RFC8724]

[RFC6241] [RFC8040]

[CORE-COMI]

[RFC7252]

[RFC8259]

[RFC8949]

3.1. Network Architecture

Figure 1 represents the architecture for Compression/Decompression (C/D) and Fragmentation/

Reassembly (F/R) based on the terminology defined in , where the Radio Gateway

(RGW) is a Sigfox Base Station and the Network Gateway (NGW) is the Sigfox cloud-based

Network.

[RFC8376]

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 4

In the case of the global Sigfox network, RGWs (or Base Stations) are distributed over multiple

countries wherever the Sigfox LPWAN service is provided. The NGW (or cloud-based Sigfox Core

Network) is a single entity that connects to all RGWs (Sigfox Base Stations) in the world, hence

providing a global single star Network topology.

The Sigfox Device sends application packets that are compressed and/or fragmented by a SCHC C/

D + F/R to reduce header size and/or fragment the packet. The resulting SCHC message is sent

over a layer two (L2) Sigfox frame to the Sigfox Base Stations, which then forward the SCHC

message to the NGW. The NGW then delivers the SCHC message and associated gathered

metadata to the Network SCHC C/D + F/R.

The Sigfox cloud-based Network communicates with the Network SCHC C/D + F/R for

compression/decompression and/or for fragmentation/reassembly. The Network SCHC C/D + F/R

shares the same set of Rules as the device SCHC C/D + F/R. The Network SCHC C/D + F/R can be

collocated with the NGW or it could be located in a different place, as long as a tunnel or secured

communication is established between the NGW and the SCHC C/D + F/R functions. After

decompression and/or reassembly, the packet can be forwarded over the Internet to one (or

several) LPWAN Application Server(s) (App(s)).

The SCHC C/D + F/R processes are bidirectional, so the same principles are applicable on both

Uplink (UL) and Downlink (DL).

Figure 1: Network Architecture

 Sigfox Device Application

+----------------+ +--------------+

| APP1 APP2 APP3 | |APP1 APP2 APP3|

+----------------+ +--------------+

| UDP | | | | UDP |

| IPv6 | | | | IPv6 |

+--------+ | | +--------+

| SCHC C/D & F/R | | |

| | | |

+-------+--------+ +--------+-----+

 $.

 $ +---------+ +--------------+ +---------+ .

 $ | | | Network | | Network | .

 +~~ |Sigfox BS| | Gateway | | SCHC | .

 | (RGW) | === | (NGW) | ... |C/D & F/R|.....

 | | | Sigfox Cloud | | | IP-based

 +---------+ +--------------+ +---------+ Network

------- Uplink message ------>

 <------- Downlink message ------

Legend:

$, ~ : Radio link

= : Internal Sigfox Network

. : External IP-based Network

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 5

3.2. Uplink

Uplink Sigfox transmissions occur in repetitions over different times and frequencies. Besides

time and frequency diversities, the Sigfox network also provides spatial diversity, as potentially

an Uplink message will be received by several Base Stations. The Uplink message application

payload size can be up to 12 bytes.

Since all messages are self-contained and Base Stations forward all these messages back to the

same Sigfox network, multiple input copies can be combined at the NGW, providing for extra

reliability based on the triple diversity (i.e., time, space, and frequency).

A detailed description of the Sigfox radio protocol can be found in .

Messages sent from the device to the Network are delivered by the Sigfox cloud-based Network

to the Network SCHC C/D + F/R through a callback/API with the following information:

Device ID

Message Sequence Number

Message Payload

Message Timestamp

Device Geolocation (optional)

Received Signal Strength Indicator (RSSI) (optional)

Device Temperature (optional)

Device Battery Voltage (optional)

The Device ID is a globally unique identifier assigned to the device, which is included in the

Sigfox header of every message. The Message Sequence Number is a monotonically increasing

number identifying the specific transmission of this Uplink message, and it is also part of the

Sigfox header. The Message Payload corresponds to the payload that the device has sent in the

Uplink transmission. Battery Voltage, Device Temperature, and RSSI values are sent in the

confirmation control message, which is mandatorily sent by the device after the successful

reception of a Downlink message (see , Section 5.2).

The Message Timestamp, Device Geolocation, RSSI, Device Temperature, and Device Battery

Voltage are metadata parameters provided by the Network.

A detailed description of the Sigfox callbacks/APIs can be found in .

Only messages that have passed the L2 Cyclic Redundancy Check (CRC) at Network reception are

delivered by the Sigfox network to the Network SCHC C/D + F/R.

The L2 Word size used by Sigfox is 1 byte (8 bits).

Figure 2 shows a SCHC message sent over Sigfox, where the SCHC message could be a full SCHC

Packet (e.g., compressed) or a SCHC Fragment (e.g., a piece of a bigger SCHC Packet).

[sigfox-spec]

•

•

•

•

•

•

•

•

[sigfox-callbacks]

[sigfox-callbacks]

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 6

Figure 2: SCHC Message in Sigfox

| Sigfox Header | Sigfox Payload |

+---------------+---------------- +

 | SCHC Message |

3.3. Downlink

Downlink transmissions are device-driven and can only take place following an Uplink

communication that indicates Downlink communication can be performed. Hence, a Sigfox

Device explicitly indicates its intention to receive a Downlink message (with a size of 8 bytes)

using a Downlink request flag when sending the preceding Uplink message to the Network. The

Downlink request flag is part of the Sigfox protocol headers. After completing the Uplink

transmission, the device opens a fixed window for Downlink reception. The delay and duration

of the reception opportunity window have fixed values. If there is a Downlink message to be sent

for this given device (e.g., either a response to the Uplink message or queued information waiting

to be transmitted), the Network transmits this message to the device during the reception

window. If no message is received by the device after the reception opportunity window has

elapsed, the device closes the reception window opportunity and gets back to the normal mode

(e.g., continue Uplink transmissions, sleep, standby, etc.).

When a Downlink message is sent to a device, a reception acknowledgement is generated by the

device, sent back to the Network through the Sigfox radio protocol, and reported in the Sigfox

network backend.

A detailed description of the Sigfox radio protocol can be found in , and a detailed

description of the Sigfox callbacks/APIs can be found in . A Downlink request

flag can be included in the information exchange between the Sigfox network and Network

SCHC.

[sigfox-spec]

[sigfox-callbacks]

3.3.1. SCHC ACK on Downlink

As explained previously, Downlink transmissions are driven by devices and can only take place

following a specific Uplink transmission that indicates and allows a following Downlink

opportunity. For this reason, when SCHC bidirectional services are used (e.g., ACK-on-Error

fragmentation mode), the SCHC protocol implementation needs to consider the times when a

Downlink message (e.g., SCHC Acknowledgement (ACK)) can be sent and/or received.

For the Uplink ACK-on-Error fragmentation mode, a Downlink opportunity be indicated by

the last fragment of every window, which is signalled by a specific value of the Fragment

Compressed Number (FCN) value, i.e., FCN = All-0 or FCN = All-1. The FCN is the tile index in a

specific window. The combination of the FCN and the window number uniquely identifies a

SCHC Fragment, as explained in . The device sends the fragments in sequence and,

after transmitting FCN = All-0 or FCN = All-1, it opens up a reception opportunity. The Network

SCHC can then decide to respond at that opportunity (or wait for a further one) with a SCHC ACK,

indicating that there are missing fragments from the current or previous windows. If there is no

SCHC ACK to be sent, or if the Network decides to wait for a further Downlink transmission

MUST

[RFC8724]

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 7

opportunity, then no Downlink transmission takes place at that opportunity and the Uplink

transmissions continue after a timeout. Intermediate SCHC Fragments with FCNs that are

different from All-0 or All-1 use the Downlink request flag to request a SCHC ACK.MUST NOT

3.4. SCHC Rules

The RuleID be included in the SCHC header. The total number of Rules to be used directly

affects the RuleID field size, and therefore the total size of the fragmentation header. For this

reason, it is to keep the number of Rules that are defined for a specific device to

the minimum possible. Large RuleID sizes (and thus larger fragmentation headers) are

acceptable for devices without significant energy constraints (e.g., a sensor that is powered by

the electricity grid).

RuleIDs can be used to differentiate data traffic classes (e.g., QoS, control vs. data, etc.) and data

sessions. They can also be used to interleave simultaneous fragmentation sessions between a

device and the Network.

MUST

RECOMMENDED

3.5. Fragmentation

The SCHC specification defines a generic fragmentation functionality that allows

sending data packets or files larger than the maximum size of a Sigfox payload. The functionality

also defines a mechanism to reliably send multiple messages by allowing to selectively resend

any lost fragments.

The SCHC fragmentation supports several modes of operation. These modes have different

advantages and disadvantages, depending on the specifics of the underlying LPWAN technology

and application use case. This section describes how the SCHC fragmentation functionality

should optimally be implemented when used over a Sigfox LPWAN for the most typical use case

applications.

As described in , the integrity of the fragmentation-reassembly process

of a SCHC Packet be checked at the receiver end. Since only Uplink/Downlink messages/

fragments that have passed the Sigfox CRC-check are delivered to the Network/Sigfox Device

SCHC C/D + F/R, integrity can be guaranteed when no consecutive messages are missing from the

sequence and all FCN bitmaps are complete. With this functionality in mind, and in order to save

protocol and processing overhead, the use of a Reassembly Check Sequence (RCS), as described in

Section 3.5.1.5, be used.

[RFC8724]

Section 8.2.3 of [RFC8724]

MUST

MUST

3.5.1. Uplink Fragmentation

Sigfox Uplink transmissions are completely asynchronous and take place in any random

frequency of the allowed Uplink bandwidth allocation. In addition, devices may go to deep sleep

mode and then wake up and transmit whenever there is a need to send information to the

Network, as there is no need to perform any Network attachment, synchronization, or other

procedures before transmitting a data packet.

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc8724#section-8.2.3

Since Uplink transmissions are asynchronous, a SCHC Fragment can be transmitted at any given

time by the device. Sigfox Uplink messages are fixed in size, and as described in , they

can carry a payload of 0-12 bytes (0-96 bits). Hence, a single SCHC Tile size, per fragmentation

mode, can be defined so that every Sigfox message always carries one SCHC Tile.

When the ACK-on-Error mode is used for Uplink fragmentation, the SCHC Compound ACK

defined in be used in the Downlink responses.

[RFC8376]

[RFC9441] MUST

3.5.1.1. SCHC Sender-Abort

As defined in , a SCHC Sender-Abort can be triggered when the number of SCHC ACK

REQ attempts is greater than or equal to MAX_ACK_REQUESTS. In the case of SCHC over Sigfox, a

SCHC Sender-Abort be sent if the number of repeated All-1s sent in sequence, without a

Compound ACK reception in between, is greater than or equal to MAX_ACK_REQUESTS.

[RFC8724]

MUST

3.5.1.2. SCHC Receiver-Abort

As defined in , a SCHC Receiver-Abort is triggered when the receiver has no RuleID and

DTag pairs available for a new session. In the case of this profile, a SCHC Receiver-Abort be

sent if, for a single device, all the RuleIDs are being processed by the receiver (i.e., have an active

session) at a certain time and a new one is requested or if the RuleID of the fragment is not valid.

A SCHC Receiver-Abort be triggered when the Inactivity Timer expires.

MAX_ACK_REQUESTS can be increased when facing high error rates.

Although a SCHC Receiver-Abort can be triggered at any point in time, a SCHC Receiver-Abort

Downlink message only be sent when there is a Downlink transmission opportunity.

[RFC8724]

MUST

MUST

MUST

3.5.1.3. Single-Byte SCHC Header for Uplink Fragmentation

3.5.1.3.1. Uplink No-ACK Mode: Single-Byte SCHC Header

Single-byte SCHC Header No-ACK mode be used for transmitting short, non-critical packets

that require fragmentation and do not require full reliability. This mode can be used by Uplink-

only devices that do not support Downlink communications or by bidirectional devices when

they send non-critical data. Note that sending non-critical data by using a reliable fragmentation

mode (which is only possible for bidirectional devices) may incur unnecessary overhead.

Since there are no multiple windows in the No-ACK mode, the W bit is not present. However, it

 use the FCN field to indicate the size of the data packet. In this sense, the data packet would

need to be split into X fragments and, similarly to the other fragmentation modes, the first

transmitted fragment would need to be marked with FCN = X-1. Consecutive fragments be

marked with decreasing FCN values, having the last fragment marked with FCN = (All-1). Hence,

even though the No-ACK mode does not allow recovering missing fragments, it allows implicitly

indicating the size of the expected packet to the Network and hence detects whether all

fragments have been received or not at the receiver side. In case the FCN field is not used to

indicate the size of the data packet, the Network can detect whether all fragments have been

received or not by using the integrity check.

MUST

MUST

MUST

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 9

When using the Single-byte SCHC Header for Uplink fragmentation, the fragmentation header

 be 8 bits in size and is composed as follows:

RuleID size: 3 bits

DTag size (T): 0 bits

Fragment Compressed Number (FCN) size (N): 5 bits

Other F/R parameters be configured as follows:

As per , in the No-ACK mode, the W (window) field is not present.

Regular tile size: 11 bytes

All-1 tile size: 0 to 10 bytes

Inactivity Timer: Application-dependent. The default value is 12 hours.

RCS size: 5 bits

The maximum SCHC Packet size is 340 bytes.

Section 3.6.1 presents SCHC Fragment format examples, and Section 5.1 provides fragmentation

examples, using Single-byte SCHC Header No-ACK mode.

MUST

•

•

•

MUST

• [RFC8724]

•

•

•

•

3.5.1.3.2. Uplink ACK-on-Error Mode: Single-Byte SCHC Header

ACK-on-Error with a single-byte header be used for short- to medium-sized packets that

need to be sent reliably. ACK-on-Error is optimal for reliable SCHC Packet transmission over

Sigfox transmissions, since it leads to a reduced number of ACKs in the lower-capacity Downlink

channel. Also, Downlink messages can be sent asynchronously and opportunistically. In contrast,

ACK-Always would not minimize the number of ACKs, and No-ACK would not allow reliable

transmission.

Allowing transmission of packets/files up to 300 bytes long, the SCHC Uplink fragmentation

header size is 8 bits in size and is composed as follows:

RuleID size: 3 bits

DTag size (T): 0 bits

Window index (W) size (M): 2 bits

Fragment Compressed Number (FCN) size (N): 3 bits

Other F/R parameters be configured as follows:

MAX_ACK_REQUESTS: 5

WINDOW_SIZE: 7 (i.e., the maximum FCN value is 0b110)

Regular tile size: 11 bytes

All-1 tile size: 0 to 10 bytes

Retransmission Timer: Application-dependent. The default value is 12 hours.

Inactivity Timer: Application-dependent. The default value is 12 hours.

RCS size: 3 bits

MUST

•

•

•

•

MUST

•

•

•

•

•

•

•

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 10

Section 3.6.2 presents SCHC Fragment format examples, and Section 5.2 provides fragmentation

examples, using ACK-on-Error with a single-byte header.

3.5.1.4. Two-Byte SCHC Header for Uplink Fragmentation

ACK-on-Error with a two-byte header be used for medium- to large-sized packets that need

to be sent reliably. ACK-on-Error is optimal for reliable SCHC Packet transmission over Sigfox,

since it leads to a reduced number of ACKs in the lower-capacity Downlink channel. Also,

Downlink messages can be sent asynchronously and opportunistically. In contrast, ACK-Always

would not minimize the number of ACKs, and No-ACK would not allow reliable transmission.

MUST

3.5.1.4.1. Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 1

In order to allow transmission of medium to large packets/files up to 480 bytes long, the SCHC

Uplink fragmentation header size is 16 bits in size and is composed as follows:

RuleID size: 6 bits

DTag size (T): 0 bits

Window index (W) size (M): 2 bits

Fragment Compressed Number (FCN) size (N): 4 bits

RCS size: 4 bits

Other F/R parameters be configured as follows:

MAX_ACK_REQUESTS: 5

WINDOW_SIZE: 12 (with a maximum value of FCN=0b1011)

Regular tile size: 10 bytes

All-1 tile size: 1 to 10 bytes

Retransmission Timer: Application-dependent. The default value is 12 hours.

Inactivity Timer: Application-dependent. The default value is 12 hours.

Note that WINDOW_SIZE is limited to 12. This is because 4 windows (M = 2) with bitmaps of size

12 can be fitted in a single SCHC Compound ACK.

Section 3.6.3 presents SCHC Fragment format examples, using ACK-on-Error with two-byte

header Option 1.

•

•

•

•

•

MUST

•

•

•

•

•

•

3.5.1.4.2. Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 2

In order to allow transmission of very large packets/files up to 2400 bytes long, the SCHC Uplink

fragmentation header size is 16 bits in size and is composed as follows:

RuleID size: 8 bits

DTag size (T): 0 bits

Window index (W) size (M): 3 bits

Fragment Compressed Number (FCN) size (N): 5 bits

RCS size: 5 bits

•

•

•

•

•

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 11

Other F/R parameters be configured as follows:

MAX_ACK_REQUESTS: 5

WINDOW_SIZE: 31 (with a maximum value of FCN=0b11110)

Regular tile size: 10 bytes

All-1 tile size: 0 to 9 bytes

Retransmission Timer: Application-dependent. The default value is 12 hours.

Inactivity Timer: Application-dependent. The default value is 12 hours.

Section 3.6.4 presents SCHC Fragment format examples, using ACK-on-Error with two-byte

header Option 2.

MUST

•

•

•

•

•

•

3.5.1.5. All-1 SCHC Fragment and RCS Behavior

For ACK-on-Error, as defined in , it is expected that the last SCHC Fragment of the last

window will always be delivered with an All-1 FCN. Since this last window may not be full (i.e., it

may be composed of fewer than WINDOW_SIZE fragments), an All-1 fragment may follow a value

of FCN higher than 1 (0b01). In this case, the receiver cannot determine from the FCN values

alone whether there are or are not any missing fragments right before the All-1 fragment.

For Rules where the number of fragments in the last window is unknown, an RCS field be

used, indicating the number of fragments in the last window, including the All-1. With this RCS

value, the receiver can detect if there are missing fragments before the All-1 and hence construct

the corresponding SCHC ACK Bitmap accordingly and send it in response to the All-1.

[RFC8724]

MUST

3.5.2. Downlink Fragmentation

In some LPWAN technologies, as part of energy-saving techniques, Downlink transmission is

only possible immediately after an Uplink transmission. This allows the device to go in a very

deep sleep mode and preserve battery without the need to listen to any information from the

Network. This is the case for Sigfox-enabled devices, which can only listen to Downlink

communications after performing an Uplink transmission and requesting a Downlink.

When there are fragments to be transmitted in the Downlink, an Uplink message is required to

trigger the Downlink communication. In order to avoid a potentially high delay for fragmented

datagram transmission in the Downlink, the fragment receiver perform an Uplink

transmission as soon as possible after reception of a Downlink fragment that is not the last one.

Such an Uplink transmission be triggered by sending a SCHC message, such as a SCHC ACK.

However, other data messages can equally be used to trigger Downlink communications. The

fragment receiver send an Uplink transmission (e.g., empty message) and request a

Downlink every 24 hours when no SCHC session is started. Whether this Uplink transmission is

used (and the transmission rate, if used) depends on application-specific requirements.

Sigfox Downlink messages are fixed in size, and as described in they can carry a

payload of 0-8 bytes (0-64 bits). Hence, a single SCHC Tile size per mode can be defined so that

every Sigfox message always carries one SCHC Tile.

MAY

MAY

MUST

[RFC8376]

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 12

For reliable Downlink fragment transmission, the ACK-Always mode be used. Note that

ACK-on-Error does not guarantee Uplink feedback (since no SCHC ACK will be sent when no

errors occur in a window), and No-ACK would not allow reliable transmission.

The SCHC Downlink fragmentation header size is 8 bits in size and is composed as follows:

RuleID size: 3 bits

DTag size (T): 0 bits

Window index (W) size (M): 0 bits

Fragment Compressed Number (FCN) size (N): 5 bits

Other F/R parameters be configured as follows:

MAX_ACK_REQUESTS: 5

WINDOW_SIZE: 31 (with a maximum value of FCN=0b11110)

Regular tile size: 7 bytes

All-1 tile size: 0 to 6 bytes

Retransmission Timer: Application-dependent. The default value is 12 hours.

Inactivity Timer: Application-dependent. The default value is 12 hours.

RCS size: 5 bits

SHOULD

•

•

•

•

MUST

•

•

•

•

•

•

•

3.6. SCHC over Sigfox F/R Message Formats

This section depicts the different formats of SCHC Fragment, SCHC ACK (including the SCHC

Compound ACK defined in), and SCHC Abort used in SCHC over Sigfox.[RFC9441]

3.6.1. Uplink No-ACK Mode: Single-Byte SCHC Header

3.6.1.1. Regular SCHC Fragment

Figure 3 shows an example of a Regular SCHC Fragment for all fragments except the last one. As

tiles are 11 bytes in size, padding be added. The penultimate tile of a SCHC Packet is of

regular size.

MUST NOT

Figure 3: Regular SCHC Fragment Format for All Fragments except the Last One

|- SCHC Fragment Header -|

+------------------------+---------+

| RuleID | FCN | Payload |

+------------+-----------+---------+

| 3 bits | 5 bits | 88 bits |

3.6.1.2. All-1 SCHC Fragment

Figure 4 shows an example of the All-1 message. The All-1 message contain the last tile of

the SCHC Packet. Padding be added, as the resulting size is a multiple of an L2 Word.

MAY

MUST NOT

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 13

The All-1 messages Fragment Header includes a 5-bit RCS, and 3 bits are added as padding to

complete 2 bytes. The payload size of the All-1 message ranges from 0 to 80 bits.

As per , the All-1 must be distinguishable from a SCHC Sender-Abort message (with the

same RuleID and N values). The All-1 have the last tile of the SCHC Packet. The SCHC Sender-

Abort message header size is 1 byte with no padding bits.

For the All-1 message to be distinguishable from the Sender-Abort message, the Sender-Abort

message be 1 byte (only header with no padding). This way, the minimum size of the All-1

is 2 bytes, and the Sender-Abort message is 1 byte.

Figure 4: All-1 SCHC Message Format with the Last Tile

|-------- SCHC Fragment Header -------|

+--------------------------------------+--------------+

| RuleID | FCN=ALL-1 | RCS | b'000 | Payload |

+--------+-----------+--------+--------+--------------+

| 3 bits | 5 bits | 5 bits | 3 bits | 0 to 80 bits |

[RFC8724]

MAY

MUST

3.6.1.3. SCHC Sender-Abort Message Format

Figure 5: SCHC Sender-Abort Message Format

 Sender-Abort

|------ Header ------|

+--------------------+

| RuleID | FCN=ALL-1 |

+--------+-----------+

| 3 bits | 5 bits |

3.6.2. Uplink ACK-on-Error Mode: Single-Byte SCHC Header

3.6.2.1. Regular SCHC Fragment

Figure 6 shows an example of a Regular SCHC Fragment for all fragments except the last one. As

tiles are 11 bytes in size, padding be added.

The SCHC ACK REQ be used, instead the All-1 SCHC Fragment be used to request

a SCHC ACK from the receiver (Network SCHC). As per , the All-0 message is

distinguishable from the SCHC ACK REQ (All-1 message). The penultimate tile of a SCHC Packet is

of regular size.

MUST NOT

Figure 6: Regular SCHC Fragment Format for All Fragments except the Last One

|-- SCHC Fragment Header --|

+--------------------------+---------+

| RuleID | W | FCN | Payload |

+--------+--------+--------+---------+

| 3 bits | 2 bits | 3 bits | 88 bits |

MUST NOT MUST

[RFC8724]

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 14

3.6.2.2. All-1 SCHC Fragment

Figure 7 shows an example of the All-1 message. The All-1 message contain the last tile of

the SCHC Packet. Padding be added, as the resulting size is L2-word-multiple.

As per , the All-1 must be distinguishable from a SCHC Sender-Abort message (with

same RuleID, M, and N values). The All-1 have the last tile of the SCHC Packet. The SCHC

Sender-Abort message header size is 1 byte with no padding bits.

For the All-1 message to be distinguishable from the Sender-Abort message, the Sender-Abort

message be 1 byte (only header with no padding). This way, the minimum size of the All-1

is 2 bytes, and the Sender-Abort message is 1 byte.

MAY

MUST NOT

Figure 7: All-1 SCHC Message Format with the Last Tile

|------------- SCHC Fragment Header -----------|

+---+--------------+

| RuleID | W | FCN=ALL-1 | RCS |b'00000 | Payload |

+--------+--------+-----------+--------+--------+--------------+

| 3 bits | 2 bits | 3 bits | 3 bits | 5 bits | 0 to 80 bits |

[RFC8724]

MAY

MUST

3.6.2.3. SCHC ACK Format

Figure 8 shows the SCHC ACK format when all fragments have been correctly received (C=1).

Padding be added to complete the 64-bit Sigfox Downlink frame payload size.

In case SCHC Fragment losses are found in any of the windows of the SCHC Packet (C=0), the

SCHC Compound ACK defined in be used. The SCHC Compound ACK message

format is shown in Figure 9.

Losses are found in windows W = w1,...,wi, where w1 < w2 <...< wi.

MUST

Figure 8: SCHC Success ACK Message Format

|---- SCHC ACK Header ----|

+-------------------------+---------+

| RuleID | W | C=b'1 | b'0-pad |

+--------+--------+-------+---------+

| 3 bits | 2 bits | 1 bit | 58 bits |

[RFC9441] MUST

Figure 9: SCHC Compound ACK Message Format

|--- SCHC ACK Header ---|- W=w1 -|...|----- W=wi ------|

+------+--------+-------+--------+...+--------+--------+------+-------+

|RuleID| W=b'w1 | C=b'0 | Bitmap |...| W=b'wi | Bitmap | b'00 |b'0-pad|

+------+--------+-------+--------+...+--------+--------+------+-------+

|3 bits| 2 bits | 1 bit | 7 bits |...| 2 bits | 7 bits |2 bits|

3.6.2.4. SCHC Sender-Abort Message Format

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 15

Figure 10: SCHC Sender-Abort Message Format

|---- Sender-Abort Header ----|

+-----------------------------+

| RuleID | W=b'11 | FCN=ALL-1 |

+--------+--------+-----------+

| 3 bits | 2 bits | 3 bits |

3.6.2.5. SCHC Receiver-Abort Message Format

Figure 11: SCHC Receiver-Abort Message Format

|- Receiver-Abort Header -|

+---------------------------------+-----------------+---------+

| RuleID | W=b'11 | C=b'1 | b'11 | 0xFF (all 1's) | b'0-pad |

+--------+--------+-------+-------+-----------------+---------+

| 3 bits | 2 bits | 1 bit | 2 bit | 8 bit | 48 bits |

 next L2 Word boundary ->| <-- L2 Word --> |

3.6.3. Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 1

3.6.3.1. Regular SCHC Fragment

Figure 12 shows an example of a Regular SCHC Fragment for all fragments except the last one.

The penultimate tile of a SCHC Packet is of the regular size.

The SCHC ACK REQ be used, instead the All-1 SCHC Fragment be used to request

a SCHC ACK from the receiver (Network SCHC). As per , the All-0 message is

distinguishable from the SCHC ACK REQ (All-1 message).

Figure 12: Regular SCHC Fragment Format for All Fragments except the Last One

|------- SCHC Fragment Header ------|

+-----------------------------------+---------+

| RuleID | W | FCN | b'0000 | Payload |

+--------+--------+--------+--------+---------+

| 6 bits | 2 bits | 4 bits | 4 bits | 80 bits |

MUST NOT MUST

[RFC8724]

3.6.3.2. All-1 SCHC Fragment

Figure 13 shows an example of the All-1 message. The All-1 message contain the last tile of

the SCHC Packet.

The All-1 message Fragment Header contains an RCS of 4 bits to complete the two-byte size. The

size of the last tile ranges from 8 to 80 bits.

MUST

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 16

As per , the All-1 must be distinguishable from the SCHC Sender-Abort message (with

same RuleID, M, and N values). The All-1 have the last tile of the SCHC Packet that be

at least 1 byte. The SCHC Sender-Abort message header size is 2 bytes with no padding bits.

For the All-1 message to be distinguishable from the Sender-Abort message, the Sender-Abort

message be 2 bytes (only header with no padding). This way, the minimum size of the All-1

is 3 bytes, and the Sender-Abort message is 2 bytes.

Figure 13: All-1 SCHC Message Format with the Last Tile

|--------- SCHC Fragment Header -------|

+--------------------------------------+--------------+

| RuleID | W | FCN=ALL-1 | RCS | Payload |

+--------+--------+-----------+--------+--------------+

| 6 bits | 2 bits | 4 bits | 4 bits | 8 to 80 bits |

[RFC8724]

MUST MUST

MUST

3.6.3.3. SCHC ACK Format

Figure 14 shows the SCHC ACK format when all fragments have been correctly received (C=1).

Padding be added to complete the 64-bit Sigfox Downlink frame payload size.

The SCHC Compound ACK message be used in case SCHC Fragment losses are found in any

window of the SCHC Packet (C=0). The SCHC Compound ACK message format is shown in Figure

15. The SCHC Compound ACK can report up to 4 windows with losses, as shown in Figure 16.

When sent in the Downlink, the SCHC Compound ACK be 0 padded (padding bits must be 0)

to complement the 64 bits required by the Sigfox payload.

Losses are found in windows W = w1,...,wi, where w1 < w2 <...< wi.

MUST

Figure 14: SCHC Success ACK Message Format

|---- SCHC ACK Header ----|

+-------------------------+---------+

| RuleID | W | C=b'1 | b'0-pad |

+--------+--------+-------+---------+

| 6 bits | 2 bits | 1 bit | 55 bits |

MUST

MUST

Figure 15: SCHC Compound ACK Message Format

|--- SCHC ACK Header ---|- W=w1 -|...|---- W=wi -----|

+--------+------+-------+--------+...+------+--------+------+-------+

| RuleID |W=b'w1| C=b'0 | Bitmap |...|W=b'wi| Bitmap | b'00 |b'0-pad|

+--------+------+-------+--------+...+------+--------+------+-------+

| 6 bits |2 bits| 1 bit | 12 bits|...|2 bits| 12 bits|2 bits|

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 17

Losses are found in windows W = w1,...,wi, where w1 < w2 <...< wi.

Figure 16: SCHC Compound ACK Message Format Example with Losses in All Windows

|- SCHC ACK Header -|- W=0 -| |- W=1 -|...

+------+------+-----+-------+------+-------+...

|RuleID|W=b'00|C=b'0|Bitmap |W=b'01|Bitmap |...

+------+------+-----+-------+------+-------+...

|6 bits|2 bits|1 bit|12 bits|2 bits|12 bits|...

 ... |- W=2 -| |- W=3 -|

 ...+------+-------+------+-------+---+

 ...|W=b'10|Bitmap |W=b'11|Bitmap |b'0|

 ...+------+-------+------+-------+---+

 ...|2 bits|12 bits|2 bits|12 bits|

3.6.3.4. SCHC Sender-Abort Message Format

Figure 17: SCHC Sender-Abort Message Format

|---- Sender-Abort Header ----|

+-----------------------------+

| RuleID | W | FCN=ALL-1 |

+--------+--------+-----------+

| 6 bits | 2 bits | 4 bits |

3.6.3.5. SCHC Receiver-Abort Message Format

Figure 18: SCHC Receiver-Abort Message Format

|- Receiver-Abort Header -|

+---------------------------------+-----------------+---------+

| RuleID | W=b'11 | C=b'1 | 0x7F | 0xFF (all 1's) | b'0-pad |

+--------+--------+-------+-------+-----------------+---------+

| 6 bits | 2 bits | 1 bit | 7 bit | 8 bit | 40 bits |

 next L2 Word boundary ->| <-- L2 Word --> |

3.6.4. Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 2

3.6.4.1. Regular SCHC Fragment

Figure 19 shows an example of a Regular SCHC Fragment for all fragments except the last one.

The penultimate tile of a SCHC Packet is of the regular size.

Figure 19: Regular SCHC Fragment Format for All Fragments except the Last One

|-- SCHC Fragment Header --|

+--------------------------+---------+

| RuleID | W | FCN | Payload |

+--------+--------+--------+---------+

| 8 bits | 3 bits | 5 bits | 80 bits |

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 18

The SCHC ACK REQ be used, instead the All-1 SCHC Fragment be used to request

a SCHC ACK from the receiver (Network SCHC). As per , the All-0 message is

distinguishable from the SCHC ACK REQ (All-1 message).

MUST NOT MUST

[RFC8724]

3.6.4.2. All-1 SCHC Fragment

Figure 20 shows an example of the All-1 message. The All-1 message contain the last tile of

the SCHC Packet.

The All-1 message Fragment Header contains an RCS of 5 bits and 3 padding bits to complete a 3-

byte Fragment Header. The size of the last tile, if present, ranges from 8 to 72 bits.

As per , the All-1 must be distinguishable from the SCHC Sender-Abort message (with

same RuleID, M, and N values). The SCHC Sender-Abort message header size is 2 bytes with no

padding bits.

For the All-1 message to be distinguishable from the Sender-Abort message, the Sender-Abort

message be 2 bytes (only header with no padding). This way, the minimum size of the All-1

is 3 bytes, and the Sender-Abort message is 2 bytes.

MAY

Figure 20: All-1 SCHC Message Format with the Last Tile

|-------------- SCHC Fragment Header -----------|

+---+--------------+

| RuleID | W | FCN=ALL-1 | RCS | b'000 | Payload |

+--------+--------+-----------+--------+--------+--------------+

| 8 bits | 3 bits | 5 bits | 5 bits | 3 bits | 8 to 72 bits |

[RFC8724]

MUST

3.6.4.3. SCHC ACK Format

Figure 21 shows the SCHC ACK format when all fragments have been correctly received (C=1).

Padding be added to complete the 64-bit Sigfox Downlink frame payload size.

The SCHC Compound ACK message be used in case SCHC Fragment losses are found in any

window of the SCHC Packet (C=0). The SCHC Compound ACK message format is shown in Figure

22. The SCHC Compound ACK can report up to 3 windows with losses.

When sent in the Downlink, the SCHC Compound ACK be 0 padded (padding bits must be 0)

to complement the 64 bits required by the Sigfox payload.

MUST

Figure 21: SCHC Success ACK Message Format

|---- SCHC ACK Header ----|

+-------------------------+---------+

| RuleID | W | C=b'1 | b'0-pad |

+--------+--------+-------+---------+

| 8 bits | 3 bits | 1 bit | 52 bits |

MUST

MUST

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 19

Losses are found in windows W = w1,...,wi, where w1 < w2 <...< wi.

Figure 22: SCHC Compound ACK Message Format

|-- SCHC ACK Header --|- W=w1 -|...|---- W=wi -----|

+------+------+-------+--------+...+------+--------+------+-------+

|RuleID|W=b'w1| C=b'0 | Bitmap |...|W=b'wi| Bitmap | 000 |b'0-pad|

+------+------+-------+--------+...+------+--------+------+-------+

|8 bits|3 bits| 1 bit | 31 bits|...|3 bits| 31 bits|3 bits|

3.6.4.4. SCHC Sender-Abort Message Format

Figure 23: SCHC Sender-Abort Message Format

|---- Sender-Abort Header ----|

+-----------------------------+

| RuleID | W | FCN=ALL-1 |

+--------+--------+-----------+

| 8 bits | 3 bits | 5 bits |

3.6.4.5. SCHC Receiver-Abort Message Format

Figure 24: SCHC Receiver-Abort Message Format

|-- Receiver-Abort Header -|

+-----------------------------------+-----------------+---------+

| RuleID | W=b'111 | C=b'1 | b'1111 | 0xFF (all 1's) | b'0-pad |

+--------+---------+-------+--------+-----------------+---------+

| 8 bits | 3 bits | 1 bit | 4 bit | 8 bit | 40 bits |

 next L2 Word boundary ->| <-- L2 Word --> |

3.6.5. Downlink ACK-Always Mode: Single-Byte SCHC Header

3.6.5.1. Regular SCHC Fragment

Figure 25 shows an example of a Regular SCHC Fragment for all fragments except the last one.

The penultimate tile of a SCHC Packet is of the regular size.

The SCHC ACK be used, instead the All-1 SCHC Fragment be used to request a

SCHC ACK from the receiver. As per , the All-0 message is distinguishable from the

SCHC ACK REQ (All-1 message).

Figure 25: Regular SCHC Fragment Format for All Fragments except the Last One

 SCHC Fragment

|-- Header --|

+-----------------+---------+

| RuleID | FCN | Payload |

+--------+--------+---------+

| 3 bits | 5 bits | 56 bits |

MUST NOT MUST

[RFC8724]

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 20

3.6.5.2. All-1 SCHC Fragment

Figure 26 shows an example of the All-1 message. The All-1 message contain the last tile of

the SCHC Packet.

The All-1 message Fragment Header contains an RCS of 5 bits and 3 padding bits to complete a 2-

byte Fragment Header. The size of the last tile, if present, ranges from 8 to 48 bits.

As per , the All-1 must be distinguishable from the SCHC Sender-Abort message (with

same RuleID and N values). The SCHC Sender-Abort message header size is 1 byte with no

padding bits.

For the All-1 message to be distinguishable from the Sender-Abort message, the Sender-Abort

message be 1 byte (only header with no padding). This way, the minimum size of the All-1

is 2 bytes, and the Sender-Abort message is 1 bytes.

MAY

Figure 26: All-1 SCHC Message Format with the Last Tile

|--------- SCHC Fragment Header -------|

+--------------------------------------+--------------+

| RuleID | FCN=ALL-1 | RCS | b'000 | Payload |

+--------+-----------+--------+--------+--------------+

| 3 bits | 5 bits | 5 bits | 3 bits | 0 to 48 bits |

[RFC8724]

MUST

3.6.5.3. SCHC ACK Format

Figure 27 shows the SCHC ACK format when all fragments have been correctly received (C=1).

Padding be added to complete 2 bytes.

The SCHC ACK message format is shown in Figure 28.

MUST

Figure 27: SCHC Success ACK Message Format

 SCHC ACK

|-- Header --|

+----------------+---------+

| RuleID | C=b'1 | b'0-pad |

+--------+-------+---------+

| 3 bits | 1 bit | 4 bits |

Figure 28: SCHC Compound ACK Message Format

|---- SCHC ACK Header ----|

+--------+-------+--------+---------+

| RuleID | C=b'0 | Bitmap | b'0-pad |

+--------+-------+--------+---------+

| 3 bits | 1 bit | 31 bits| 5 bits |

3.6.5.4. SCHC Sender-Abort Message Format

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 21

Figure 29: SCHC Sender-Abort Message Format

 Sender-Abort

|---- Header ----|

+--------------------+

| RuleID | FCN=ALL-1 |

+--------+-----------+

| 3 bits | 5 bits |

3.6.5.5. SCHC Receiver-Abort Message Format

Figure 30: SCHC Receiver-Abort Message Format

 Receiver-Abort

|--- Header ---|

+----------------+--------+-----------------+

| RuleID | C=b'1 | b'1111 | 0xFF (all 1's) |

+--------+-------+--------+-----------------+

| 3 bits | 1 bit | 4 bit | 8 bit |

3.7. Padding

The Sigfox payload fields have different characteristics in Uplink and Downlink.

Uplink messages can contain a payload size from 0 to 12 bytes. The Sigfox radio protocol allows

sending zero bits, one single bit of information for binary applications (e.g., status), or an integer

number of bytes. Therefore, for 2 or more bits of payload, it is required to add padding to the

next integer number of bytes. The reason for this flexibility is to optimize transmission time and

hence save battery consumption at the device.

On the other hand, Downlink frames have a fixed length. The payload length be 64 bits (i.e.,

8 bytes). Hence, if less information bits are to be transmitted, padding be used with bits

equal to 0. The receiver remove the added padding bits before the SCHC reassembly

process.

MUST

MUST

MUST

4. Fragmentation Rules Examples

This section provides an example of RuleID configuration for interoperability between the F/R

modes presented in this document. Note that the RuleID space for Uplink F/R is different than the

one for Downlink F/R; therefore, this section is divided in two subsections: Rules for Uplink

fragmentation and Rules for Downlink fragmentation.

For Uplink F/R, multiple header lengths were described in Section 3.5. All of them are part of the

SCHC over Sigfox Profile and offer not only low protocol overhead for small payloads (single byte

header) but also extensibility to transport larger payloads with more overhead (2-byte header,

Options 1 and 2). The usage of the RuleID space for each header length is an implementation

choice, but we provide an example of it in the following section. This illustrates implementation

choices made in order to 1) identify the different header length and 2) finally parse the RuleID

field to identify the RuleID value and execute the associated treatment.

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 22

4.1. Uplink Fragmentation Rules Examples

The RuleID field for Uplink F/R modes has different sizes depending on the header length. In

order to identify the header length and then the value of the RuleID, the RuleID field is

interpreted as follows:

The RuleID field is the first one to be parsed in the SCHC header, starting from the leftmost

bits.

For Single-byte SCHC Header F/R modes, a RuleID field of 3 bits is expected:

If the first 3 leftmost bits have a value different than 0b'111, then it signals a Single-byte

SCHC Header F/R mode.

If their value is 0b'111, then it signals a Two-byte SCHC Header F/R mode.

For Single-byte SCHC Header F/R modes:

There are 7 RuleIDs available (with values from 0b'000-0b'110); the RuleID with value

0b'111 is reserved to indicate a Two-byte SCHC Header.

This set of Rules is called "standard rules", and it is used to implement Single-byte SCHC

Header modes.

Each RuleID is associated with a set of properties defining if Uplink F/R is used and which

Uplink F/R mode is used. As an example, the RuleID 0b'000 is mapped onto Uplink No-ACK

Mode: Single-byte SCHC Header, and the RuleIDs 0b'001 and 0b'002 are mapped onto

Uplink ACK-on-Error mode: Single-byte SCHC Header (2 RuleIDs to allow for SCHC Packet

interleaving).

For Two-byte SCHC Header F/R modes, at least 6 bits for the RuleID field are expected:

The 3 first leftmost bits are always 0b'111.

If the following 3 bits have a different value than 0b'111, then it signals the Two-byte

SCHC Header Option 1.

If the following 3 bits are 0b'111, then it signals the Two-byte SCHC Header Option 2.

For the Two-byte SCHC Header Option 1, there are 7 RuleIDs available

(0b'111000-0b'111110), 0b'111111 being reserved to indicate the Two-byte SCHC Header

Option 2. This set of Rules is called "extended rules", and it is used to implement the Uplink

ACK-on-Error mode: Two-byte SCHC Header Option 1.

For the Two-byte SCHC Header Option 2, there are 2 additional bits to parse as the RuleID,

so 4 RuleIDs are available (0b'11111100-0b'11111111). This set of Rules is used to cover

specific cases that previous RuleIDs do not cover. As an example, RuleID 0b'00111111 is

used to transport uncompressed IPv6 packets using the Uplink ACK-on-Error mode: Two-

byte SCHC Header Option 2.

•

•

◦

◦

•

◦

◦

◦

•

◦

▪

▪

◦

◦

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 23

4.2. Downlink Fragmentation Rules Example

For the Downlink ACK-Always Mode: Single-byte SCHC Header, RuleIDs can get values in ranges

from 0b'000 to 0b'111.

5. Fragmentation Sequence Examples

In this section, some sequence diagrams depict message exchanges for different fragmentation

modes and use cases are shown. In the examples, 'Seq' indicates the Sigfox Sequence Number of

the frame carrying a fragment.

5.1. Uplink No-ACK Examples

The FCN field indicates the size of the data packet. The first fragment is marked with FCN = X-1,

where X is the number of fragments the message is split into. All fragments are marked with

decreasing FCN values. The last packet fragment is marked with FCN = All-1 (1111).

Case No Losses - All fragments are sent and received successfully.

When the first SCHC Fragment is received, the receiver can calculate the total number of SCHC

Fragments that the SCHC Packet is composed of. For example, if the first fragment is numbered

with FCN=6, the receiver can expect six more messages/fragments (i.e., with FCN going from 5

downwards and the last fragment with an FCN equal to 15).

Case Losses on Any Fragment except the First

Figure 31: Uplink No-ACK No-Losses

Sender Receiver

 |-------FCN=6,Seq=1-------->|

 |-------FCN=5,Seq=2-------->|

 |-------FCN=4,Seq=3-------->|

 |-------FCN=3,Seq=4-------->|

 |-------FCN=2,Seq=5-------->|

 |-------FCN=1,Seq=6-------->|

 |-------FCN=15,Seq=7------->| All fragments received

(End)

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 24

Figure 32: Uplink No-ACK Losses (Scenario 1)

Sender Receiver

 |-------FCN=6,Seq=1-------->|

 |-------FCN=5,Seq=2----X |

 |-------FCN=4,Seq=3-------->|

 |-------FCN=3,Seq=4-------->|

 |-------FCN=2,Seq=5-------->|

 |-------FCN=1,Seq=6-------->|

 |-------FCN=15,Seq=7------->| Missing Fragment Unable to reassemble

(End)

5.2. Uplink ACK-on-Error Examples: Single-Byte SCHC Header

The Single-byte SCHC Header ACK-on-Error mode allows sending up to 28 fragments and packet

sizes up to 300 bytes. The SCHC Fragments may be delivered asynchronously, and Downlink ACK

can be sent opportunistically.

Case No Losses

The Downlink flag must be enabled in the sender Uplink message to allow a Downlink message

from the receiver. The Downlink Enable in the figures shows where the sender enable the

Downlink and wait for an ACK.

Case Fragment Losses in the First Window

In this case, fragments are lost in the first window (W=0). After the first All-0 message arrives, the

receiver leverages the opportunity and sends a SCHC ACK with the corresponding bitmap and

C=0.

MUST

Figure 33: Uplink ACK-on-Error No-Losses

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2----->|

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4----->|

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->|

DL Enable |-----W=0,FCN=0,Seq=7----->|

 (no ACK)

 |-----W=1,FCN=6,Seq=8----->|

 |-----W=1,FCN=5,Seq=9----->|

 |-----W=1,FCN=4,Seq=10---->|

DL Enable |-----W=1,FCN=7,Seq=11---->| All fragments received

 |<- Compound ACK,W=1,C=1 --| C=1

 (End)

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 25

After the loss fragments from the first window (W=0) are resent, the sender continues

transmitting the fragments of the following window (W=1) without opening a reception

opportunity. Finally, the All-1 fragment is sent, the Downlink is enabled, and the SCHC ACK is

received with C=1. Note that the SCHC Compound ACK also uses a Sequence Number.

Case Fragment All-0 Lost in the First Window (W=0)

In this example, the All-0 of the first window (W=0) is lost. Therefore, the receiver waits for the

next All-0 message of intermediate windows or All-1 message of last window to generate the

corresponding SCHC ACK, which indicates that the All-0 of window 0 is absent.

The sender resends the missing All-0 messages (with any other missing fragment from window 0)

without opening a reception opportunity.

Figure 34: Uplink ACK-on-Error Losses in the First Window

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2--X |

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4----->|

 |-----W=0,FCN=2,Seq=5--X | __

 |-----W=0,FCN=1,Seq=6----->| | W=0

DL Enable |-----W=0,FCN=0,Seq=7----->| Missing Fragments<- FCN=5,Seq=2

 |<- Compound ACK,W=0,C=0 --| Bitmap:1011011 | FCN=2,Seq=5

 |-----W=0,FCN=5,Seq=9----->| --

 |-----W=0,FCN=2,Seq=10---->|

 |-----W=1,FCN=6,Seq=11---->|

 |-----W=1,FCN=5,Seq=12---->|

 |-----W=1,FCN=4,Seq=13---->|

DL Enable |-----W=1,FCN=7,Seq=14---->| All fragments received

 |<-Compound ACK,W=1,C=1 ---| C=1

 (End)

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 26

In the following diagram, besides the All-0, there are other fragment losses in the first window

(W=0).

In the next examples, there are fragment losses in both the first (W=0) and second (W=1)

windows. The retransmission cycles after the All-1 is sent (i.e., not in intermediate windows)

 always finish with an All-1, as it serves as an ACK Request message to confirm the correct

reception of the retransmitted fragments.

Figure 35: Uplink ACK-on-Error All-0 Lost in the First Window

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2----->|

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4----->|

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->| DL Enable

 |-----W=0,FCN=0,Seq=7--X |

 (no ACK)

 |-----W=1,FCN=6,Seq=8----->|

 |-----W=1,FCN=5,Seq=9----->| __

 |-----W=1,FCN=4,Seq=10---->| |W=0

DL Enable |-----W=1,FCN=7,Seq=11---->| Missing Fragment<- FCN=0,Seq=7

 |<-Compound ACK,W=0,C=0 ---| Bitmap:1111110 |__

 |-----W=0,FCN=0,Seq=13---->| All fragments received

DL Enable |-----W=1,FCN=7,Seq=14---->|

 |<-Compound ACK,W=1,C=1 ---| C=1

 (End)

Figure 36: Uplink ACK-on-Error All-0 and Other Fragments Lost in the First Window

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2--X |

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4--X |

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->|

DL Enable |-----W=0,FCN=0,Seq=7--X |

 (no ACK)

 |-----W=1,FCN=6,Seq=8----->|

 |-----W=1,FCN=5,Seq=9----->| __

 |-----W=1,FCN=4,Seq=10---->| |W=0

DL Enable |-----W=1,FCN=7,Seq=11---->| Missing Fragment<- FCN=5,Seq=2

 |<--Compound ACK,W=0,C=0 --| Bitmap:1010110 |FCN=3,Seq=4

 |-----W=0,FCN=5,Seq=13---->| |FCN=0,Seq=7

 |-----W=0,FCN=3,Seq=14---->| --

 |-----W=0,FCN=0,Seq=15---->| All fragments received

DL Enable |-----W=1,FCN=7,Seq=16---->|

 |<-Compound ACK,W=1,C=1 ---| C=1

 (End)

MUST

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 27

The figure below is a similar case as above but with fewer fragments in the second window

(W=1).

Case SCHC ACK is Lost

Figure 37: Uplink ACK-on-Error All-0 and Other Fragments Lost in the First and Second Windows

(1)

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2--X |

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4--X | __

 |-----W=0,FCN=2,Seq=5----->| |W=0

 |-----W=0,FCN=1,Seq=6----->| |FCN=5,Seq=2

DL Enable |-----W=0,FCN=0,Seq=7--X | |FCN=3,Seq=4

 (no ACK) |FCN=0,Seq=7

 |-----W=1,FCN=6,Seq=8--X | |W=1

 |-----W=1,FCN=5,Seq=9----->| |FCN=6,Seq=8

 |-----W=1,FCN=4,Seq=10-X | |FCN=4,Seq=10

DL Enable |-----W=1,FCN=7,Seq=11---->| Missing Fragment<-|__

 |<-Compound ACK,W=0,1,C=0--| Bitmap W=0:1010110

 |-----W=0,FCN=5,Seq=13---->| W=1:0100001

 |-----W=0,FCN=3,Seq=14---->|

 |-----W=0,FCN=0,Seq=15---->|

 |-----W=1,FCN=6,Seq=16---->|

 |-----W=1,FCN=4,Seq=17---->| All fragments received

DL Enable |-----W=1,FCN=7,Seq=18---->|

 |<-Compound ACK,W=1,C=1----| C=1

 (End)

Figure 38: Uplink ACK-on-Error All-0 and Other Fragments Lost in the First and Second Windows

(2)

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2--X |

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4--X |

 |-----W=0,FCN=2,Seq=5----->| __

 |-----W=0,FCN=1,Seq=6----->| |W=0

DL Enable |-----W=0,FCN=0,Seq=7--X | |FCN=5,Seq=2

 (no ACK) |FCN=3,Seq=4

 |-----W=1,FCN=6,Seq=8--X | |FCN=0,Seq=7

DL Enable |-----W=1,FCN=7,Seq=9----->| Missing Fragment--> W=1

 |<-Compound ACK,W=0,1, C=0-| Bitmap W=0:1010110,|FCN=6,Seq=8

 |-----W=0,FCN=5,Seq=11---->| W=1:0000001 |__

 |-----W=0,FCN=3,Seq=12---->|

 |-----W=0,FCN=0,Seq=13---->|

 |-----W=1,FCN=6,Seq=14---->| All fragments received

DL Enable |-----W=1,FCN=7,Seq=15---->|

 |<-Compound ACK, W=1,C=1---| C=1

 (End)

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 28

SCHC over Sigfox does not implement the SCHC ACK REQ message. Instead, it uses the SCHC All-1

message to request a SCHC ACK when required.

Case SCHC Compound ACK at the End

In this example, SCHC Fragment losses are found in both windows 0 and 1. However, the sender

does not send a SCHC Compound ACK after the All-0 of window 0. Instead, it sends a SCHC

Compound ACK indicating fragment losses on both windows.

The number of times the same SCHC ACK message will be retransmitted is determined by the

MAX_ACK_REQUESTS.

Figure 39: Uplink ACK-on-Error ACK Lost

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2----->|

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4----->|

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->|

DL Enable |-----W=0,FCN=0,Seq=7----->|

 (no ACK)

 |-----W=1,FCN=6,Seq=8----->|

 |-----W=1,FCN=5,Seq=9----->|

 |-----W=1,FCN=4,Seq=10---->|

DL Enable |-----W=1,FCN=7,Seq=11---->| All fragments received

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |-----W=1,FCN=7,Seq=13---->| RESEND ACK

 |<-Compound ACK,W=1,C=1 ---| C=1

 (End)

Figure 40: Uplink ACK-on-Error Fragments Lost in the First and Second Windows with One

Compound ACK

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2--X |

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4--X |

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->| __

DL Enable |-----W=0,FCN=0,Seq=7----->| Waits for |W=0

 (no ACK) next DL opportunity |FCN=5,Seq=2

 |-----W=1,FCN=6,Seq=8--X | |FCN=3,Seq=4

DL Enable |-----W=1,FCN=7,Seq=9----->| Missing Fragment<-- W=1

 |<-Compound ACK,W=0,1, C=0-| Bitmap W=0:1010110 |FCN=6,Seq=8

 |-----W=0,FCN=5,Seq=11---->| W=1:0000001 --

 |-----W=0,FCN=3,Seq=12---->|

 |-----W=1,FCN=6,Seq=13---->| All fragments received

DL Enable |-----W=1,FCN=7,Seq=14---->|

 |<-Compound ACK, W=1, C=1 -| C=1

 (End)

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 29

5.3. SCHC Abort Examples

Case SCHC Sender-Abort

The sender may need to send a Sender-Abort to stop the current communication. For example,

this may happen if the All-1 has been sent MAX_ACK_REQUESTS times.

Case Receiver-Abort

The receiver may need to send a Receiver-Abort to stop the current communication. This

message can only be sent after a Downlink Enable.

Figure 41: Uplink ACK-on-Error Sender-Abort

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2----->|

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4----->|

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->|

DL Enable |-----W=0,FCN=0,Seq=7----->|

 (no ACK)

 |-----W=1,FCN=6,Seq=8----->|

 |-----W=1,FCN=5,Seq=9----->|

 |-----W=1,FCN=4,Seq=10---->|

DL Enable |-----W=1,FCN=7,Seq=11---->| All fragments received

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |-----W=1,FCN=7,Seq=13---->| RESEND ACK (1)

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |-----W=1,FCN=7,Seq=15---->| RESEND ACK (2)

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |-----W=1,FCN=7,Seq=17---->| RESEND ACK (3)

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |-----W=1,FCN=7,Seq=18---->| RESEND ACK (4)

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |-----W=1,FCN=7,Seq=19---->| RESEND ACK (5)

 | X--Compound ACK,W=1,C=1 -| C=1

DL Enable |----Sender-Abort,Seq=20-->| exit with error condition

 (End)

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 30

[RFC2119]

8. References

8.1. Normative References

Figure 42: Uplink ACK-on-Error Receiver-Abort

 Sender Receiver

 |-----W=0,FCN=6,Seq=1----->|

 |-----W=0,FCN=5,Seq=2----->|

 |-----W=0,FCN=4,Seq=3----->|

 |-----W=0,FCN=3,Seq=4----->|

 |-----W=0,FCN=2,Seq=5----->|

 |-----W=0,FCN=1,Seq=6----->|

DL Enable |-----W=0,FCN=0,Seq=7----->|

 |<------ RECV ABORT ------| under-resourced

 (Error)

6. Security Considerations

The radio protocol authenticates and ensures the integrity of each message. This is achieved by

using a unique Device ID and an AES-128-based message authentication code, ensuring that the

message has been generated and sent by the device (see , Section 3.8) or Network

(see , Section 4.3) with the ID claimed in the message .

Application data may or may not be encrypted at the application layer, depending on the

criticality of the use case. This flexibility allows a balance between cost and effort versus risk.

AES-128 in counter mode is used for encryption. Cryptographic keys are independent for each

device. These keys are associated with the Device ID, and separate integrity and encryption keys

are pre-provisioned. An encryption key is only provisioned if confidentiality is to be used (see

, Section 5.3; note that further documentation is available at Sigfox upon request).

The radio protocol has protections against replay attacks, and the cloud-based core Network

provides firewall protection against undesired incoming communications .

The previously described security mechanisms do not guarantee end-to-end security between the

device SCHC C/D + F/R and the Network SCHC C/D + F/R; potential security threats described in

 are applicable to the profile specified in this document.

In some circumstances, sending device location information is privacy sensitive. The Device

Geolocation parameter provided by the Network is optional; therefore, it can be omitted to

protect this aspect of the device privacy.

[sigfox-spec]

[sigfox-spec] [sigfox-spec]

[sigfox-spec]

[sigfox-spec]

[RFC8724]

7. IANA Considerations

This document has no IANA actions.

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 31

[RFC8174]

[RFC8724]

[RFC9441]

[sigfox-spec]

[CORE-COMI]

[RFC6241]

[RFC7252]

[RFC8040]

[RFC8259]

[RFC8376]

[RFC8949]

, , ,

, , March 1997,

.

, ,

, , , May 2017,

.

, , , , and ,

,

, , April 2020,

.

, , , , , and ,

, , , July 2023,

.

, ,

.

8.2. Informative References

, , , , and

, , ,

, 13 March 2023,

.

, , , and ,

, , ,

June 2011, .

, , and ,

, , , June 2014,

.

, , and , , ,

, January 2017, .

, ,

, , , December 2017,

.

, , ,

, May 2018, .

 and , ,

, , , December 2020,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Minaburo, A. Toutain, L. Gomez, C. Barthel, D. JC. Zuniga "SCHC: Generic

Framework for Static Context Header Compression and Fragmentation" RFC

8724 DOI 10.17487/RFC8724 <https://www.rfc-editor.org/info/

rfc8724>

Zúñiga, JC. Gomez, C. Aguilar, S. Toutain, L. Céspedes, S. D. Wistuba

"Static Context Header Compression (SCHC) Compound Acknowledgement

(ACK)" RFC 9441 DOI 10.17487/RFC9441 <https://www.rfc-editor.org/

info/rfc9441>

Sigfox "Sigfox Device Radio Specifications" <https://build.sigfox.com/sigfox-

device-radio-specifications>

Veillette, M., Ed. van der Stok, P., Ed. Pelov, A. Bierman, A. C. Bormann,

Ed. "CoAP Management Interface (CORECONF)" Work in Progress Internet-

Draft, draft-ietf-core-comi-12 <https://datatracker.ietf.org/doc/

html/draft-ietf-core-comi-12>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.

"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Shelby, Z. Hartke, K. C. Bormann "The Constrained Application Protocol

(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-

editor.org/info/rfc7252>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI

10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"

STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-

editor.org/info/rfc8259>

Farrell, S., Ed. "Low-Power Wide Area Network (LPWAN) Overview" RFC 8376

DOI 10.17487/RFC8376 <https://www.rfc-editor.org/info/rfc8376>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"

STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-

editor.org/info/rfc8949>

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 32

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc9441
https://www.rfc-editor.org/info/rfc9441
https://build.sigfox.com/sigfox-device-radio-specifications
https://build.sigfox.com/sigfox-device-radio-specifications
https://datatracker.ietf.org/doc/html/draft-ietf-core-comi-12
https://datatracker.ietf.org/doc/html/draft-ietf-core-comi-12
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8376
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949

[sigfox-callbacks]

[sigfox-docs]

, ,

.

, , .

Sigfox "Sigfox Callbacks" <https://support.sigfox.com/docs/callbacks-

documentation>

Sigfox "Sigfox Documentation" <https://support.sigfox.com/docs>

Acknowledgements

 has been funded in part by the Spanish Government through the TEC2016-79988-P

grant and the PID2019-106808RA-I00 grant (funded by MCIN / AEI / 10.13039/501100011033) and

by Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la

Generalitat de Catalunya through 2017 grant SGR 376 and 2021 grant SGR 00330.

 has been funded by the ERDF and the Spanish Government through project

TEC2016-79988-P and project PID2019-106808RA-I00, AEI/FEDER, EU (funded by MCIN / AEI /

10.13039/501100011033).

 has been funded in part by the ANID Chile Project FONDECYT Regular 1201893

and Basal Project FB0008.

 has been funded by the ANID Chile Project FONDECYT Regular 1201893.

The authors would like to thank , , , ,

, and for their useful comments and implementation design

considerations.

Carles Gomez

Sergio Aguilar

Sandra Cespedes

Diego Wistuba

Ana Minaburo Clement Mannequin Rafael Vidal Julien Boite

Renaud Marty Antonis Platis

Authors' Addresses

Juan Carlos Zúñiga

 Montreal QC

Canada

 j.c.zuniga@ieee.org Email:

Carles Gomez

Universitat Politècnica de Catalunya

C/Esteve Terradas, 7

 08860 Castelldefels

Spain

 carles.gomez@upc.edu Email:

Sergio Aguilar

Universitat Politècnica de Catalunya

C/Esteve Terradas, 7

 08860 Castelldefels

Spain

 sergio.aguilar.romero@upc.edu Email:

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 33

https://support.sigfox.com/docs/callbacks-documentation
https://support.sigfox.com/docs/callbacks-documentation
https://support.sigfox.com/docs
mailto:j.c.zuniga@ieee.org
mailto:carles.gomez@upc.edu
mailto:sergio.aguilar.romero@upc.edu

Laurent Toutain

IMT-Atlantique

CS 17607

2 rue de la Chataigneraie

 35576 Cesson-Sevigne Cedex

France

 Laurent.Toutain@imt-atlantique.fr Email:

Sandra Céspedes

Concordia University

1455 De Maisonneuve Blvd. W.

 Montreal QC H3G 1M8

Canada

 sandra.cespedes@concordia.ca Email:

Diego Wistuba

NIC Labs, Universidad de Chile

Av. Almte. Blanco Encalada 1975

Santiago

Chile

 research@witu.cl Email:

Julien Boite

Unabiz (Sigfox)

Labege

France

 juboite@free.fr Email:

 https://www.sigfox.com/ URI:

RFC 9442 SCHC over Sigfox LPWAN July 2023

Zúñiga, et al. Standards Track Page 34

mailto:Laurent.Toutain@imt-atlantique.fr
mailto:sandra.cespedes@concordia.ca
mailto:research@witu.cl
mailto:juboite@free.fr
https://www.sigfox.com/

	RFC 9442
	Static Context Header Compression (SCHC) over Sigfox Low-Power Wide Area Network (LPWAN)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. SCHC over Sigfox
	3.1. Network Architecture
	3.2. Uplink
	3.3. Downlink
	3.3.1. SCHC ACK on Downlink

	3.4. SCHC Rules
	3.5. Fragmentation
	3.5.1. Uplink Fragmentation
	3.5.1.1. SCHC Sender-Abort
	3.5.1.2. SCHC Receiver-Abort
	3.5.1.3. Single-Byte SCHC Header for Uplink Fragmentation
	3.5.1.3.1. Uplink No-ACK Mode: Single-Byte SCHC Header
	3.5.1.3.2. Uplink ACK-on-Error Mode: Single-Byte SCHC Header

	3.5.1.4. Two-Byte SCHC Header for Uplink Fragmentation
	3.5.1.4.1. Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 1
	3.5.1.4.2. Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 2

	3.5.1.5. All-1 SCHC Fragment and RCS Behavior

	3.5.2. Downlink Fragmentation

	3.6. SCHC over Sigfox F/R Message Formats
	3.6.1. Uplink No-ACK Mode: Single-Byte SCHC Header
	3.6.1.1. Regular SCHC Fragment
	3.6.1.2. All-1 SCHC Fragment
	3.6.1.3. SCHC Sender-Abort Message Format

	3.6.2. Uplink ACK-on-Error Mode: Single-Byte SCHC Header
	3.6.2.1. Regular SCHC Fragment
	3.6.2.2. All-1 SCHC Fragment
	3.6.2.3. SCHC ACK Format
	3.6.2.4. SCHC Sender-Abort Message Format
	3.6.2.5. SCHC Receiver-Abort Message Format

	3.6.3. Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 1
	3.6.3.1. Regular SCHC Fragment
	3.6.3.2. All-1 SCHC Fragment
	3.6.3.3. SCHC ACK Format
	3.6.3.4. SCHC Sender-Abort Message Format
	3.6.3.5. SCHC Receiver-Abort Message Format

	3.6.4. Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 2
	3.6.4.1. Regular SCHC Fragment
	3.6.4.2. All-1 SCHC Fragment
	3.6.4.3. SCHC ACK Format
	3.6.4.4. SCHC Sender-Abort Message Format
	3.6.4.5. SCHC Receiver-Abort Message Format

	3.6.5. Downlink ACK-Always Mode: Single-Byte SCHC Header
	3.6.5.1. Regular SCHC Fragment
	3.6.5.2. All-1 SCHC Fragment
	3.6.5.3. SCHC ACK Format
	3.6.5.4. SCHC Sender-Abort Message Format
	3.6.5.5. SCHC Receiver-Abort Message Format

	3.7. Padding

	4. Fragmentation Rules Examples
	4.1. Uplink Fragmentation Rules Examples
	4.2. Downlink Fragmentation Rules Example

	5. Fragmentation Sequence Examples
	5.1. Uplink No-ACK Examples
	5.2. Uplink ACK-on-Error Examples: Single-Byte SCHC Header
	5.3. SCHC Abort Examples

	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgements
	Authors' Addresses

 Static Context Header Compression (SCHC) over Sigfox Low-Power Wide Area Network (LPWAN)

 Montreal
 QC
 Canada

 j.c.zuniga@ieee.org

 Universitat Politècnica de Catalunya

 C/Esteve Terradas, 7
 Castelldefels
 08860
 Spain

 carles.gomez@upc.edu

 Universitat Politècnica de Catalunya

 C/Esteve Terradas, 7
 Castelldefels
 08860
 Spain

 sergio.aguilar.romero@upc.edu

 IMT-Atlantique

 2 rue de la Chataigneraie
 CS 17607
 Cesson-Sevigne Cedex
 35576
 France

 Laurent.Toutain@imt-atlantique.fr

 Concordia University

 1455 De Maisonneuve Blvd. W.
 Montreal
 QC
 H3G 1M8
 Canada

 sandra.cespedes@concordia.ca

 NIC Labs, Universidad de Chile

 Av. Almte. Blanco Encalada 1975
 Santiago
 Chile

 research@witu.cl

 Unabiz (Sigfox)

 Labege
 France

 juboite@free.fr
 https://www.sigfox.com/

 int
 lpwan
 IoT
 Sigfox
 SCHC
 LPWAN
 fragmentation
 Reliable Delivery
 Link Layer Protocols
 Cross-Layer Protocols
 Adaptation Layer

 The Static Context Header Compression (SCHC) and fragmentation specification (RFC 8724) describes a generic framework for application header compression and fragmentation modes designed for Low-Power Wide Area Network (LPWAN) technologies.
 This document defines a profile of SCHC over Sigfox LPWAN and provides optimal parameter values and modes of operation.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . SCHC over Sigfox

 . Network Architecture

 . Uplink

 . Downlink

 . SCHC ACK on Downlink

 . SCHC Rules

 . Fragmentation

 . Uplink Fragmentation

 . Downlink Fragmentation

 . SCHC over Sigfox F/R Message Formats

 . Uplink No-ACK Mode: Single-Byte SCHC Header

 . Uplink ACK-on-Error Mode: Single-Byte SCHC Header

 . Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 1

 . Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 2

 . Downlink ACK-Always Mode: Single-Byte SCHC Header

 . Padding

 . Fragmentation Rules Examples

 . Uplink Fragmentation Rules Examples

 . Downlink Fragmentation Rules Example

 . Fragmentation Sequence Examples

 . Uplink No-ACK Examples

 . Uplink ACK-on-Error Examples: Single-Byte SCHC Header

 . SCHC Abort Examples

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 The Generic Framework for Static Context Header Compression (SCHC) and Fragmentation specification can be used in conjunction with any of the four LPWAN technologies
described in . These LPWANs have similar characteristics, such as star-oriented
topologies, network architecture, connected devices with built-in applications, etc.

 SCHC offers a considerable degree of flexibility to accommodate all these LPWAN technologies. Even though there are a great number of similarities between
them, some differences exist with respect to the transmission characteristics, payload sizes, etc. Hence, there are optimal parameters and modes of operation
that can be used when SCHC is used in conjunction with a specific LPWAN technology.

 Sigfox is an LPWAN technology that offers energy-efficient connectivity for devices at a very low cost.
 Complete Sigfox documentation can be found in .
 Sigfox aims to provide a very wide area network composed of Base Stations that receive short Uplink messages (up to 12 bytes in size) sent by devices over the long-range Sigfox radio protocol, as described in .
 Base Stations then forward messages to the Sigfox Cloud infrastructure for further processing (e.g., to offer geolocation services) and final delivery to the customer.
 Base Stations also relay Downlink messages (with a fixed 8-byte size) sent by the Sigfox Cloud to the devices, i.e., Downlink messages are being generated when devices explicitly request these messages with a flag in an Uplink message.
 With SCHC functionalities, the Sigfox network offers more reliable communications (including recovery of lost messages) and is able to convey extended-size payloads (allowing for fragmentation/reassembly of
messages) .

 This document describes the parameters, settings, and modes of operation to be used when SCHC is implemented over a Sigfox LPWAN. The set of parameters forms a "SCHC over Sigfox Profile".
 The SCHC over Sigfox Profile is applicable to the Sigfox Radio specification versions up to v1.6/March
2022 (support for future versions would have to be assessed).

 Terminology

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 It is assumed that the reader is familiar with the terms and mechanisms defined in and . Also, it is assumed that the reader is familiar with Sigfox terminology .

 SCHC over Sigfox
 The Generic SCHC Framework described in takes advantage of previous knowledge of traffic flows existing in LPWAN applications to avoid context synchronization.
 Contexts need to be stored and pre-configured on both ends.
 This can be done either by using a provisioning protocol, by out-of-band means, or by
 pre-provisioning them (e.g., at manufacturing time).
 For example, the context exchange can be done by using the Network Configuration Protocol (NETCONF) with Secure Shell (SSH), RESTCONF with secure HTTP methods, and CoAP Management Interface (CORECONF) with the Constrained Application Protocol (CoAP) as provisioning protocols. The contexts can be encoded in XML under NETCONF, in JSON under RESTCONF, and in Concise Binary Object Representation (CBOR) under CORECONF.
 The way contexts are configured and stored on both ends is out of the scope of this document.

 Network Architecture
 represents the architecture for Compression/Decompression (C/D) and Fragmentation/Reassembly (F/R) based
on the terminology defined in , where the Radio Gateway (RGW) is a Sigfox Base Station and the Network Gateway (NGW) is the
Sigfox cloud-based Network.

 Network Architecture

 Sigfox Device Application
+----------------+ +--------------+
| APP1 APP2 APP3 | |APP1 APP2 APP3|
+----------------+ +--------------+
| UDP | | | | UDP |
| IPv6 | | | | IPv6 |
+--------+ | | +--------+
| SCHC C/D & F/R | | |
| | | |
+-------+--------+ +--------+-----+
 $.
 $ +---------+ +--------------+ +---------+ .
 $ | | | Network | | Network | .
 +~~ |Sigfox BS| | Gateway | | SCHC | .
 | (RGW) | === | (NGW) | ... |C/D & F/R|.....
 | | | Sigfox Cloud | | | IP-based
 +---------+ +--------------+ +---------+ Network
------- Uplink message ------>
 <------- Downlink message ------
Legend:
$, ~ : Radio link
= : Internal Sigfox Network
. : External IP-based Network

 In the case of the global Sigfox network, RGWs (or Base Stations) are distributed over multiple countries wherever the Sigfox LPWAN service is provided.
The NGW (or cloud-based Sigfox Core Network) is a single entity that connects to all RGWs (Sigfox Base Stations) in the world, hence providing a global single star Network topology.
 The Sigfox Device sends application packets that are compressed and/or fragmented by a SCHC C/D + F/R to reduce header size and/or fragment the packet.
The resulting SCHC message is sent over a layer two (L2) Sigfox frame to the Sigfox Base Stations, which then forward the SCHC message to the NGW.
The NGW then delivers the SCHC message and associated gathered metadata to the Network SCHC C/D + F/R.
 The Sigfox cloud-based Network communicates with the Network SCHC C/D + F/R for compression/decompression and/or for fragmentation/reassembly. The Network SCHC C/D + F/R shares the same set of Rules
as the device SCHC C/D + F/R. The Network SCHC C/D + F/R can be collocated with the NGW or it could be located in a different place, as long as a tunnel or secured communication is established between
the NGW and the SCHC C/D + F/R functions. After decompression and/or reassembly, the packet can be forwarded over the Internet to one (or several) LPWAN Application Server(s) (App(s)).
 The SCHC C/D + F/R processes are bidirectional, so the same principles are applicable on both Uplink (UL) and Downlink (DL).

 Uplink
 Uplink Sigfox transmissions occur in repetitions over different times and frequencies.
Besides time and frequency diversities, the Sigfox network also provides spatial diversity, as potentially an Uplink message will be received by several Base Stations. The Uplink message application payload size can be up to 12 bytes.
 Since all messages are self-contained and Base Stations forward all these messages back to the same Sigfox network, multiple input copies can be
combined at the NGW, providing for extra reliability based on the triple diversity (i.e., time, space, and frequency).

A detailed description of the Sigfox radio protocol can be found in .

 Messages sent from the device to the Network are delivered by the Sigfox cloud-based Network to the Network SCHC C/D + F/R through a callback/API with the following information:

 Device ID
 Message Sequence Number
 Message Payload
 Message Timestamp
 Device Geolocation (optional)
 Received Signal Strength Indicator (RSSI) (optional)
 Device Temperature (optional)
 Device Battery Voltage (optional)

 The Device ID is a globally unique identifier assigned to the device, which is included in the Sigfox header of every message. The Message Sequence Number is a monotonically
increasing number identifying the specific transmission of this Uplink message, and it is also part of the Sigfox header. The Message Payload corresponds to the payload that the
device has sent in the Uplink transmission.
	Battery Voltage, Device Temperature, and RSSI values are sent in the confirmation control message, which is mandatorily sent by the device after the successful reception of a Downlink message (see , Section 5.2).
 The Message Timestamp, Device Geolocation, RSSI, Device Temperature, and Device Battery Voltage are metadata parameters provided by the Network.
 A detailed description of the Sigfox callbacks/APIs can be found in .
 Only messages that have passed the L2 Cyclic Redundancy Check (CRC) at Network reception are delivered by the Sigfox network to the Network SCHC C/D + F/R.
 The L2 Word size used by Sigfox is 1 byte (8 bits).
 shows a SCHC message sent over Sigfox, where the SCHC message could be a full SCHC Packet (e.g., compressed)
or a SCHC Fragment (e.g., a piece of a bigger SCHC Packet).

 SCHC Message in Sigfox

| Sigfox Header | Sigfox Payload |
+---------------+---------------- +
 | SCHC Message |

 Downlink

 Downlink transmissions are device-driven and can only take place
 following an Uplink communication that indicates Downlink communication can be performed. Hence, a Sigfox Device explicitly indicates its intention to receive a Downlink message (with a size of 8 bytes)
using a Downlink request flag when sending the preceding Uplink message to the Network. The Downlink request flag is part of the Sigfox protocol headers. After completing the Uplink transmission, the device opens a fixed window for Downlink reception.
The delay and duration of the reception opportunity window have fixed values. If there is a Downlink message to be sent for this given device (e.g., either
a response to the Uplink message or queued information waiting to be transmitted), the Network transmits this message to the device during the reception window. If no message is received by the device after
the reception opportunity window has elapsed, the device closes the reception window opportunity and gets back to the normal mode (e.g., continue Uplink transmissions, sleep, standby, etc.).

 When a Downlink message is sent to a device, a reception acknowledgement is generated by the device, sent back to the Network through the Sigfox radio protocol, and reported in the Sigfox network backend.

A detailed description of the Sigfox radio protocol can be found in , and a detailed description of the Sigfox callbacks/APIs can be found in . A Downlink request flag can be included in the information exchange between the Sigfox network and Network SCHC.

 SCHC ACK on Downlink

As explained previously, Downlink transmissions are driven by devices and can only take place following a specific Uplink transmission that indicates and allows a following Downlink opportunity.
For this reason, when SCHC bidirectional services are used (e.g., ACK-on-Error fragmentation mode), the SCHC protocol implementation needs to consider the times when a Downlink message
(e.g., SCHC Acknowledgement (ACK)) can be sent and/or received.

For the Uplink ACK-on-Error fragmentation mode, a Downlink opportunity MUST be indicated by the last fragment of every window, which is signalled by a specific value of the Fragment Compressed Number (FCN) value, i.e., FCN = All-0 or FCN = All-1. The FCN is the tile index in a specific window. The combination of the FCN and the window number uniquely identifies a SCHC Fragment, as explained in .
 The device sends the fragments in sequence and, after
transmitting FCN = All-0 or FCN = All-1, it opens up a reception opportunity. The Network SCHC can then decide to respond at that opportunity (or wait for a further one) with a SCHC ACK, indicating that there are missing fragments from the current or previous windows. If there is no SCHC ACK to be sent, or if the Network decides to wait for a further Downlink transmission opportunity, then no
Downlink transmission takes place at that opportunity and the Uplink transmissions continue after a timeout.
 Intermediate SCHC Fragments with FCNs that are different from All-0 or All-1 MUST NOT use the Downlink request flag to request a SCHC ACK.

 SCHC Rules

The RuleID MUST be included in the SCHC header. The total number of Rules to be used directly affects the RuleID field size, and therefore
the total size of the fragmentation header. For this reason, it is RECOMMENDED to keep the number of Rules that are defined for a specific device to the minimum possible.
 Large RuleID sizes (and thus larger fragmentation headers) are acceptable for devices without significant energy constraints (e.g., a sensor that is powered by the electricity grid).

RuleIDs can be used to differentiate data traffic classes (e.g., QoS, control vs. data, etc.) and data sessions.
They can also be used to interleave simultaneous fragmentation sessions between a device and the Network.

 Fragmentation

The SCHC specification defines a generic fragmentation functionality that
allows sending data packets or files larger than the maximum size of a Sigfox payload. The functionality also defines a mechanism to reliably send multiple messages by allowing to selectively resend any lost fragments.

The SCHC fragmentation supports several modes of operation. These modes have different advantages and disadvantages, depending
on the specifics of the underlying LPWAN technology and application use case. This section describes how the SCHC fragmentation functionality
should optimally be implemented when used over a Sigfox LPWAN for the most typical use case applications.
 As described in , the integrity of the fragmentation-reassembly process of a SCHC Packet MUST be
checked at the receiver end. Since only Uplink/Downlink messages/fragments that have passed the Sigfox CRC-check are delivered to the Network/Sigfox Device SCHC C/D + F/R,
integrity can be guaranteed when no consecutive messages are missing from the sequence and all FCN bitmaps are complete. With this functionality
in mind, and in order to save protocol and processing overhead, the use of a Reassembly Check Sequence (RCS), as described in
 , MUST be used.

 Uplink Fragmentation
 Sigfox Uplink transmissions are completely asynchronous and take place in any random frequency of the allowed Uplink bandwidth allocation.
In addition, devices may go to deep sleep mode and then wake up and transmit whenever there is a need to send information to the Network, as there is no need to perform any Network attachment, synchronization, or other procedures before transmitting a data packet.

 Since Uplink transmissions are asynchronous, a SCHC Fragment can be transmitted at any given time by the device. Sigfox Uplink messages
are fixed in size, and as described in , they can carry a payload of 0-12 bytes (0-96 bits). Hence, a single SCHC Tile size, per fragmentation
mode, can be defined so that every Sigfox message always carries one SCHC Tile.
 When the ACK-on-Error mode is used for Uplink fragmentation, the SCHC Compound ACK defined in MUST be used in the Downlink responses.

 SCHC Sender-Abort
 As defined in , a SCHC Sender-Abort can be triggered when the number of SCHC ACK REQ attempts is greater than or equal to MAX_ACK_REQUESTS.
In the case of SCHC over Sigfox, a SCHC Sender-Abort MUST be sent if the number of repeated All-1s sent in sequence, without a Compound ACK reception in between, is greater than or equal to MAX_ACK_REQUESTS.

 SCHC Receiver-Abort
 As defined in , a SCHC Receiver-Abort is triggered when the receiver has no RuleID and DTag pairs available for a new session.
In the case of this profile, a SCHC Receiver-Abort MUST be sent if, for a single device, all the RuleIDs are being processed by the receiver (i.e., have an active session)
at a certain time and a new one is requested or if the RuleID of the fragment is not valid.
 A SCHC Receiver-Abort MUST be triggered when the Inactivity Timer expires.
 MAX_ACK_REQUESTS can be increased when facing high error rates.
 Although a SCHC Receiver-Abort can be triggered at any point in time, a SCHC Receiver-Abort Downlink message MUST only be sent when there is a Downlink transmission opportunity.

 Single-Byte SCHC Header for Uplink Fragmentation

 Uplink No-ACK Mode: Single-Byte SCHC Header
 Single-byte SCHC Header No-ACK mode MUST be used for transmitting short, non-critical packets that require fragmentation and do not require full reliability.
This mode can be used by Uplink-only devices that do not support Downlink communications or by bidirectional devices when they send non-critical
data.
Note that sending non-critical data by using a reliable fragmentation mode (which is only possible for bidirectional devices) may incur unnecessary overhead.
 Since there are no multiple windows in the No-ACK mode, the W bit is not present.
 However, it MUST use the FCN field to indicate the
size of the data packet. In this sense, the data packet would need to be split into X fragments and, similarly to the other fragmentation modes,
the first transmitted fragment would need to be marked with FCN = X-1. Consecutive fragments MUST be marked with decreasing FCN values, having the
last fragment marked with FCN = (All-1). Hence, even though the No-ACK mode does not allow recovering missing fragments, it allows implicitly indicating
the size of the expected packet to the Network and hence detects whether all fragments have been received or not at the receiver side.
In case the FCN field is not used to indicate the size of the data packet, the Network can detect whether all fragments have been received or not by using the integrity check.

 When using the Single-byte SCHC Header for Uplink fragmentation, the
	 fragmentation header MUST be 8 bits in size and is composed as follows:

 RuleID size: 3 bits
 DTag size (T): 0 bits
 Fragment Compressed Number (FCN) size (N): 5 bits

 Other F/R parameters MUST be configured as follows:

 As per , in the No-ACK mode, the W (window) field is not present.
 Regular tile size: 11 bytes
 All-1 tile size: 0 to 10 bytes
 Inactivity Timer: Application-dependent. The default value is 12 hours.
 RCS size: 5 bits

 The maximum SCHC Packet size is 340 bytes.
 presents SCHC Fragment format examples, and provides fragmentation examples, using Single-byte SCHC Header No-ACK mode.

 Uplink ACK-on-Error Mode: Single-Byte SCHC Header
 ACK-on-Error with a single-byte header MUST be used for short- to medium-sized packets that need to be sent
 reliably. ACK-on-Error is optimal for reliable SCHC Packet transmission over Sigfox transmissions, since it leads to a reduced number of ACKs
 in the lower-capacity Downlink channel. Also, Downlink messages can be sent asynchronously and opportunistically.
 In contrast, ACK-Always would not minimize the number of ACKs, and No-ACK would not allow reliable transmission.

 Allowing transmission of packets/files up to 300 bytes long, the SCHC Uplink fragmentation header size is 8 bits in size and is composed as follows:

 RuleID size: 3 bits
 DTag size (T): 0 bits
 Window index (W) size (M): 2 bits
 Fragment Compressed Number (FCN) size (N): 3 bits

 Other F/R parameters MUST be configured as follows:

 MAX_ACK_REQUESTS: 5
 WINDOW_SIZE: 7 (i.e., the maximum FCN value is 0b110)
 Regular tile size: 11 bytes
 All-1 tile size: 0 to 10 bytes
 Retransmission Timer: Application-dependent. The default value is 12 hours.
 Inactivity Timer: Application-dependent. The default value is 12 hours.
 RCS size: 3 bits

 presents SCHC Fragment format examples, and provides fragmentation examples, using ACK-on-Error with a single-byte header.

 Two-Byte SCHC Header for Uplink Fragmentation
 ACK-on-Error with a two-byte header MUST be used for medium- to large-sized packets that need to be sent
 reliably. ACK-on-Error is optimal for reliable SCHC Packet transmission over Sigfox, since it
 leads to a reduced number of ACKs in the lower-capacity Downlink
 channel. Also, Downlink messages can be sent asynchronously and
 opportunistically. In contrast, ACK-Always would not minimize the number of ACKs, and No-ACK would not allow reliable transmission.

 Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 1
 In order to allow transmission of medium to large packets/files up to 480 bytes long, the SCHC Uplink fragmentation header size is 16 bits in size and is composed as follows:

 RuleID size: 6 bits
 DTag size (T): 0 bits
 Window index (W) size (M): 2 bits
 Fragment Compressed Number (FCN) size (N): 4 bits
 RCS size: 4 bits

 Other F/R parameters MUST be configured as follows:

 MAX_ACK_REQUESTS: 5
 WINDOW_SIZE: 12 (with a maximum value of FCN=0b1011)
 Regular tile size: 10 bytes
 All-1 tile size: 1 to 10 bytes
 Retransmission Timer: Application-dependent. The default value is 12 hours.
 Inactivity Timer: Application-dependent. The default value is 12 hours.

 Note that WINDOW_SIZE is limited to 12. This is because 4 windows (M = 2) with bitmaps of size 12 can be fitted in a
single SCHC Compound ACK.
 presents SCHC Fragment format examples, using ACK-on-Error with two-byte header Option 1.

 Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 2
 In order to allow transmission of very large packets/files up to 2400 bytes long, the SCHC Uplink fragmentation header size is 16 bits in size and is composed as follows:

 RuleID size: 8 bits
 DTag size (T): 0 bits
 Window index (W) size (M): 3 bits
 Fragment Compressed Number (FCN) size (N): 5 bits
 RCS size: 5 bits

 Other F/R parameters MUST be configured as follows:

 MAX_ACK_REQUESTS: 5
 WINDOW_SIZE: 31 (with a maximum value of FCN=0b11110)
 Regular tile size: 10 bytes
 All-1 tile size: 0 to 9 bytes
 Retransmission Timer: Application-dependent. The default value is 12 hours.
 Inactivity Timer: Application-dependent. The default value is 12 hours.

 presents SCHC Fragment format examples, using ACK-on-Error with two-byte header Option 2.

 All-1 SCHC Fragment and RCS Behavior
 For ACK-on-Error, as defined in , it is expected that the last SCHC Fragment of the last window will always be delivered
with an All-1 FCN. Since this last window may not be full (i.e., it may be composed of fewer than WINDOW_SIZE fragments), an All-1 fragment
may follow a value of FCN higher than 1 (0b01). In this case, the receiver cannot determine from the FCN values alone
whether there are or are not any missing fragments right before the All-1 fragment.

 For Rules where the number of fragments in the last window is unknown, an RCS field MUST be used, indicating the number of fragments
in the last window, including the All-1. With this RCS value, the receiver can detect if there are missing fragments before the All-1 and hence
construct the corresponding SCHC ACK Bitmap accordingly and send it in response to the All-1.

 Downlink Fragmentation
 In some LPWAN technologies, as part of energy-saving techniques, Downlink transmission is only possible immediately after an Uplink
transmission. This allows the device to go in a very deep sleep mode and preserve battery without the need to listen to any information
from the Network. This is the case for Sigfox-enabled devices, which can only listen to Downlink communications after performing an
Uplink transmission and requesting a Downlink.
 When there are fragments to be transmitted in the Downlink, an Uplink message is required to trigger the Downlink communication.
In order to avoid a potentially high delay for fragmented datagram transmission in the Downlink, the fragment receiver MAY perform an
Uplink transmission as soon as possible after reception of a Downlink fragment that is not the last one. Such an Uplink transmission
 MAY be triggered by sending a SCHC message, such as a SCHC ACK. However, other data messages can equally be used to trigger Downlink
communications.
The fragment receiver MUST send an Uplink transmission (e.g., empty message) and request a Downlink every 24 hours when no SCHC session is started. Whether this Uplink transmission is used (and the transmission rate, if used) depends on application-specific requirements.

 Sigfox Downlink messages are fixed in size, and as described in they can carry a payload of 0-8 bytes (0-64 bits). Hence, a
single SCHC Tile size per mode can be defined so that every Sigfox message always carries one SCHC Tile.

 For reliable Downlink fragment transmission, the ACK-Always mode SHOULD be used.
Note that ACK-on-Error does not guarantee Uplink feedback (since no SCHC ACK will be sent when no errors occur in a window), and No-ACK would not allow reliable transmission.
 The SCHC Downlink fragmentation header size is 8 bits in size and is composed as follows:

 RuleID size: 3 bits
 DTag size (T): 0 bits
 Window index (W) size (M): 0 bits
 Fragment Compressed Number (FCN) size (N): 5 bits

 Other F/R parameters MUST be configured as follows:

 MAX_ACK_REQUESTS: 5
 WINDOW_SIZE: 31 (with a maximum value of FCN=0b11110)
 Regular tile size: 7 bytes
 All-1 tile size: 0 to 6 bytes
 Retransmission Timer: Application-dependent. The default value is 12 hours.
 Inactivity Timer: Application-dependent. The default value is 12 hours.
 RCS size: 5 bits

 SCHC over Sigfox F/R Message Formats
 This section depicts the different formats of SCHC Fragment, SCHC ACK (including the SCHC Compound ACK
defined in), and SCHC Abort used in SCHC over Sigfox.

 Uplink No-ACK Mode: Single-Byte SCHC Header

 Regular SCHC Fragment
 shows an example of a Regular SCHC Fragment for all fragments except the last one.
	 As tiles are 11 bytes in size, padding MUST NOT be added.
The penultimate tile of a SCHC Packet is of regular size.

 Regular SCHC Fragment Format for All Fragments except the Last One

|- SCHC Fragment Header -|
+------------------------+---------+
| RuleID | FCN | Payload |
+------------+-----------+---------+
| 3 bits | 5 bits | 88 bits |

 All-1 SCHC Fragment
 shows an example of the All-1 message.
The All-1 message MAY contain the last tile of the SCHC Packet.
 Padding MUST NOT be
 added, as the resulting size is a multiple of an L2 Word.

 The All-1 messages Fragment Header includes a 5-bit RCS, and 3 bits are added as padding to complete 2 bytes.
 The payload size of the All-1 message ranges from 0 to 80 bits.

 All-1 SCHC Message Format with the Last Tile

|-------- SCHC Fragment Header -------|
+--------------------------------------+--------------+
| RuleID | FCN=ALL-1 | RCS | b'000 | Payload |
+--------+-----------+--------+--------+--------------+
| 3 bits | 5 bits | 5 bits | 3 bits | 0 to 80 bits |

 As per , the All-1 must be distinguishable from a SCHC Sender-Abort message (with the same RuleID and N values).
The All-1 MAY have the last tile of the SCHC Packet.
The SCHC Sender-Abort message header size is 1 byte with no padding bits.
 For the All-1 message to be distinguishable from the Sender-Abort message, the Sender-Abort message MUST be 1 byte (only header with no padding).
This way, the minimum size of the All-1 is 2 bytes, and the Sender-Abort message is 1 byte.

 SCHC Sender-Abort Message Format

 SCHC Sender-Abort Message Format

 Sender-Abort
|------ Header ------|
+--------------------+
| RuleID | FCN=ALL-1 |
+--------+-----------+
| 3 bits | 5 bits |

 Uplink ACK-on-Error Mode: Single-Byte SCHC Header

 Regular SCHC Fragment
 shows an example of a Regular SCHC Fragment for all fragments except the last one.
As tiles are 11 bytes in size, padding MUST NOT be added.

 Regular SCHC Fragment Format for All Fragments except the Last One

|-- SCHC Fragment Header --|
+--------------------------+---------+
| RuleID | W | FCN | Payload |
+--------+--------+--------+---------+
| 3 bits | 2 bits | 3 bits | 88 bits |

 The SCHC ACK REQ MUST NOT be used, instead the All-1 SCHC Fragment MUST be used to request a SCHC ACK from the receiver (Network SCHC).
As per , the All-0 message is distinguishable from the SCHC ACK REQ (All-1 message).
The penultimate tile of a SCHC Packet is of regular size.

 All-1 SCHC Fragment
 shows an example of the All-1 message.
The All-1 message MAY contain the last tile of the SCHC Packet.
Padding MUST NOT be added, as the resulting size is L2-word-multiple.

 All-1 SCHC Message Format with the Last Tile

|------------- SCHC Fragment Header -----------|
+---+--------------+
| RuleID | W | FCN=ALL-1 | RCS |b'00000 | Payload |
+--------+--------+-----------+--------+--------+--------------+
| 3 bits | 2 bits | 3 bits | 3 bits | 5 bits | 0 to 80 bits |

 As per , the All-1 must be distinguishable from a SCHC Sender-Abort message (with same RuleID, M, and N values).
The All-1 MAY have the last tile of the SCHC Packet.
The SCHC Sender-Abort message header size is 1 byte with no padding bits.
 For the All-1 message to be distinguishable from the Sender-Abort message, the Sender-Abort message MUST be 1 byte (only header with no padding).
This way, the minimum size of the All-1 is 2 bytes, and the Sender-Abort message is 1 byte.

 SCHC ACK Format
 shows the SCHC ACK format when all fragments have been correctly received (C=1).
Padding MUST be added to complete the 64-bit Sigfox Downlink frame payload size.

 SCHC Success ACK Message Format

|---- SCHC ACK Header ----|
+-------------------------+---------+
| RuleID | W | C=b'1 | b'0-pad |
+--------+--------+-------+---------+
| 3 bits | 2 bits | 1 bit | 58 bits |

 In case SCHC Fragment losses are found in any of the windows of the SCHC Packet (C=0), the SCHC Compound ACK defined in MUST be used.
The SCHC Compound ACK message format is shown in .

 SCHC Compound ACK Message Format

|--- SCHC ACK Header ---|- W=w1 -|...|----- W=wi ------|
+------+--------+-------+--------+...+--------+--------+------+-------+
|RuleID| W=b'w1 | C=b'0 | Bitmap |...| W=b'wi | Bitmap | b'00 |b'0-pad|
+------+--------+-------+--------+...+--------+--------+------+-------+
|3 bits| 2 bits | 1 bit | 7 bits |...| 2 bits | 7 bits |2 bits|

 Losses are found in windows W = w1,...,wi, where w1 < w2 <...< wi.

 SCHC Sender-Abort Message Format

 SCHC Sender-Abort Message Format

|---- Sender-Abort Header ----|
+-----------------------------+
| RuleID | W=b'11 | FCN=ALL-1 |
+--------+--------+-----------+
| 3 bits | 2 bits | 3 bits |
		

 SCHC Receiver-Abort Message Format

 SCHC Receiver-Abort Message Format

|- Receiver-Abort Header -|
+---------------------------------+-----------------+---------+
| RuleID | W=b'11 | C=b'1 | b'11 | 0xFF (all 1's) | b'0-pad |
+--------+--------+-------+-------+-----------------+---------+
| 3 bits | 2 bits | 1 bit | 2 bit | 8 bit | 48 bits |
 next L2 Word boundary ->| <-- L2 Word --> |	

 Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 1

 Regular SCHC Fragment
 shows an example of a Regular SCHC Fragment for all fragments except the last one.
The penultimate tile of a SCHC Packet is of the regular size.

 Regular SCHC Fragment Format for All Fragments except the Last One

|------- SCHC Fragment Header ------|
+-----------------------------------+---------+
| RuleID | W | FCN | b'0000 | Payload |
+--------+--------+--------+--------+---------+
| 6 bits | 2 bits | 4 bits | 4 bits | 80 bits |

 The SCHC ACK REQ MUST NOT be used, instead the All-1 SCHC Fragment MUST be used to request a SCHC ACK from the receiver (Network SCHC).
As per , the All-0 message is distinguishable from the SCHC ACK REQ (All-1 message).

 All-1 SCHC Fragment
 shows an example of the All-1 message.
The All-1 message MUST contain the last tile of the SCHC Packet.
 The All-1 message Fragment Header contains an RCS of 4 bits to complete the two-byte size.
 The size of the last tile ranges from 8 to 80 bits.

 All-1 SCHC Message Format with the Last Tile

|--------- SCHC Fragment Header -------|
+--------------------------------------+--------------+
| RuleID | W | FCN=ALL-1 | RCS | Payload |
+--------+--------+-----------+--------+--------------+
| 6 bits | 2 bits | 4 bits | 4 bits | 8 to 80 bits |

 As per , the All-1 must be distinguishable from the SCHC Sender-Abort message (with same RuleID, M, and N values).
The All-1 MUST have the last tile of the SCHC Packet that MUST be at least 1 byte.
The SCHC Sender-Abort message header size is 2 bytes with no padding bits.
 For the All-1 message to be distinguishable from the Sender-Abort message, the Sender-Abort message MUST be 2 bytes (only header with no padding).
This way, the minimum size of the All-1 is 3 bytes, and the Sender-Abort message is 2 bytes.

 SCHC ACK Format
 shows the SCHC ACK format when all fragments have been correctly received (C=1).
Padding MUST be added to complete the 64-bit Sigfox Downlink frame payload size.

 SCHC Success ACK Message Format

|---- SCHC ACK Header ----|
+-------------------------+---------+
| RuleID | W | C=b'1 | b'0-pad |
+--------+--------+-------+---------+
| 6 bits | 2 bits | 1 bit | 55 bits |

 The SCHC Compound ACK message MUST be used in case SCHC Fragment losses are found in any window of the SCHC Packet (C=0).
The SCHC Compound ACK message format is shown in .
The SCHC Compound ACK can report up to 4 windows with losses, as shown in .
 When sent in the Downlink, the SCHC Compound ACK MUST be 0 padded (padding bits must be 0) to complement the 64 bits required by the Sigfox payload.

 SCHC Compound ACK Message Format

|--- SCHC ACK Header ---|- W=w1 -|...|---- W=wi -----|
+--------+------+-------+--------+...+------+--------+------+-------+
| RuleID |W=b'w1| C=b'0 | Bitmap |...|W=b'wi| Bitmap | b'00 |b'0-pad|
+--------+------+-------+--------+...+------+--------+------+-------+
| 6 bits |2 bits| 1 bit | 12 bits|...|2 bits| 12 bits|2 bits|

 Losses are found in windows W = w1,...,wi, where w1 < w2 <...< wi.

 SCHC Compound ACK Message Format Example with Losses in All Windows

|- SCHC ACK Header -|- W=0 -| |- W=1 -|...
+------+------+-----+-------+------+-------+...
|RuleID|W=b'00|C=b'0|Bitmap |W=b'01|Bitmap |...
+------+------+-----+-------+------+-------+...
|6 bits|2 bits|1 bit|12 bits|2 bits|12 bits|...

 ... |- W=2 -| |- W=3 -|
 ...+------+-------+------+-------+---+
 ...|W=b'10|Bitmap |W=b'11|Bitmap |b'0|
 ...+------+-------+------+-------+---+
 ...|2 bits|12 bits|2 bits|12 bits|

 Losses are found in windows W = w1,...,wi, where w1 < w2 <...< wi.

 SCHC Sender-Abort Message Format

 SCHC Sender-Abort Message Format

|---- Sender-Abort Header ----|
+-----------------------------+
| RuleID | W | FCN=ALL-1 |
+--------+--------+-----------+
| 6 bits | 2 bits | 4 bits |

 SCHC Receiver-Abort Message Format

 SCHC Receiver-Abort Message Format

|- Receiver-Abort Header -|
+---------------------------------+-----------------+---------+
| RuleID | W=b'11 | C=b'1 | 0x7F | 0xFF (all 1's) | b'0-pad |
+--------+--------+-------+-------+-----------------+---------+
| 6 bits | 2 bits | 1 bit | 7 bit | 8 bit | 40 bits |
 next L2 Word boundary ->| <-- L2 Word --> |

 Uplink ACK-on-Error Mode: Two-Byte SCHC Header Option 2

 Regular SCHC Fragment
 shows an example of a Regular SCHC Fragment for all fragments except the last one.
The penultimate tile of a SCHC Packet is of the regular size.

 Regular SCHC Fragment Format for All Fragments except the Last One

|-- SCHC Fragment Header --|
+--------------------------+---------+
| RuleID | W | FCN | Payload |
+--------+--------+--------+---------+
| 8 bits | 3 bits | 5 bits | 80 bits |

 The SCHC ACK REQ MUST NOT be used, instead the All-1 SCHC Fragment MUST be used to request a SCHC ACK from the receiver (Network SCHC).
As per , the All-0 message is distinguishable from the SCHC ACK REQ (All-1 message).

 All-1 SCHC Fragment
 shows an example of the All-1 message.
The All-1 message MAY contain the last tile of the SCHC Packet.
 The All-1 message Fragment Header contains an RCS of 5 bits and 3 padding bits to complete a 3-byte Fragment Header.
 The size of the last tile, if present, ranges from 8 to 72 bits.

 All-1 SCHC Message Format with the Last Tile

|-------------- SCHC Fragment Header -----------|
+---+--------------+
| RuleID | W | FCN=ALL-1 | RCS | b'000 | Payload |
+--------+--------+-----------+--------+--------+--------------+
| 8 bits | 3 bits | 5 bits | 5 bits | 3 bits | 8 to 72 bits |

 As per , the All-1 must be distinguishable from the SCHC Sender-Abort message (with same RuleID, M, and N values).
The SCHC Sender-Abort message header size is 2 bytes with no padding bits.
 For the All-1 message to be distinguishable from the Sender-Abort message, the Sender-Abort message MUST be 2 bytes (only header with no padding).
This way, the minimum size of the All-1 is 3 bytes, and the Sender-Abort message is 2 bytes.

 SCHC ACK Format
 shows the SCHC ACK format when all fragments have been correctly received (C=1).
Padding MUST be added to complete the 64-bit Sigfox Downlink frame payload size.

 SCHC Success ACK Message Format

|---- SCHC ACK Header ----|
+-------------------------+---------+
| RuleID | W | C=b'1 | b'0-pad |
+--------+--------+-------+---------+
| 8 bits | 3 bits | 1 bit | 52 bits |

 The SCHC Compound ACK message MUST be used in case SCHC Fragment losses are found in any window of the SCHC Packet (C=0).
The SCHC Compound ACK message format is shown in .
The SCHC Compound ACK can report up to 3 windows with losses.
 When sent in the Downlink, the SCHC Compound ACK MUST be 0 padded (padding bits must be 0) to complement the 64 bits required by
the Sigfox payload.

 SCHC Compound ACK Message Format

|-- SCHC ACK Header --|- W=w1 -|...|---- W=wi -----|
+------+------+-------+--------+...+------+--------+------+-------+
|RuleID|W=b'w1| C=b'0 | Bitmap |...|W=b'wi| Bitmap | 000 |b'0-pad|
+------+------+-------+--------+...+------+--------+------+-------+
|8 bits|3 bits| 1 bit | 31 bits|...|3 bits| 31 bits|3 bits|

 Losses are found in windows W = w1,...,wi, where w1 < w2 <...< wi.

 SCHC Sender-Abort Message Format

 SCHC Sender-Abort Message Format

|---- Sender-Abort Header ----|
+-----------------------------+
| RuleID | W | FCN=ALL-1 |
+--------+--------+-----------+
| 8 bits | 3 bits | 5 bits |

 SCHC Receiver-Abort Message Format

 SCHC Receiver-Abort Message Format

|-- Receiver-Abort Header -|
+-----------------------------------+-----------------+---------+
| RuleID | W=b'111 | C=b'1 | b'1111 | 0xFF (all 1's) | b'0-pad |
+--------+---------+-------+--------+-----------------+---------+
| 8 bits | 3 bits | 1 bit | 4 bit | 8 bit | 40 bits |
 next L2 Word boundary ->| <-- L2 Word --> |

 Downlink ACK-Always Mode: Single-Byte SCHC Header

 Regular SCHC Fragment
 shows an example of a Regular SCHC Fragment for all fragments except the last one.
The penultimate tile of a SCHC Packet is of the regular size.

 Regular SCHC Fragment Format for All Fragments except the Last One

 SCHC Fragment
|-- Header --|
+-----------------+---------+
| RuleID | FCN | Payload |
+--------+--------+---------+
| 3 bits | 5 bits | 56 bits |

 The SCHC ACK MUST NOT be used, instead the All-1 SCHC Fragment MUST be used to request a SCHC ACK from the receiver.
As per , the All-0 message is distinguishable from the SCHC ACK REQ (All-1 message).

 All-1 SCHC Fragment
 shows an example of the All-1 message.
The All-1 message MAY contain the last tile of the SCHC Packet.
 The All-1 message Fragment Header contains an RCS of 5 bits and 3 padding bits to complete a 2-byte Fragment Header.
 The size of the last tile, if present, ranges from 8 to 48 bits.

 All-1 SCHC Message Format with the Last Tile

|--------- SCHC Fragment Header -------|
+--------------------------------------+--------------+
| RuleID | FCN=ALL-1 | RCS | b'000 | Payload |
+--------+-----------+--------+--------+--------------+
| 3 bits | 5 bits | 5 bits | 3 bits | 0 to 48 bits |

 As per , the All-1 must be distinguishable from the SCHC Sender-Abort message (with same RuleID and N values).
The SCHC Sender-Abort message header size is 1 byte with no padding bits.
 For the All-1 message to be distinguishable from the Sender-Abort message, the Sender-Abort message MUST be 1 byte (only header with no padding).
This way, the minimum size of the All-1 is 2 bytes, and the Sender-Abort message is 1 bytes.

 SCHC ACK Format
 shows the SCHC ACK format when all fragments have been correctly received (C=1).
Padding MUST be added to complete 2 bytes.

 SCHC Success ACK Message Format

 SCHC ACK
|-- Header --|
+----------------+---------+
| RuleID | C=b'1 | b'0-pad |
+--------+-------+---------+
| 3 bits | 1 bit | 4 bits |

The SCHC ACK message format is shown in .

 SCHC Compound ACK Message Format

|---- SCHC ACK Header ----|
+--------+-------+--------+---------+
| RuleID | C=b'0 | Bitmap | b'0-pad |
+--------+-------+--------+---------+
| 3 bits | 1 bit | 31 bits| 5 bits |

 SCHC Sender-Abort Message Format

 SCHC Sender-Abort Message Format

 Sender-Abort
|---- Header ----|
+--------------------+
| RuleID | FCN=ALL-1 |
+--------+-----------+
| 3 bits | 5 bits |

 SCHC Receiver-Abort Message Format

 SCHC Receiver-Abort Message Format

 Receiver-Abort
|--- Header ---|
+----------------+--------+-----------------+
| RuleID | C=b'1 | b'1111 | 0xFF (all 1's) |
+--------+-------+--------+-----------------+
| 3 bits | 1 bit | 4 bit | 8 bit |

 Padding
 The Sigfox payload fields have different characteristics in Uplink and Downlink.
 Uplink messages can contain a payload size from 0 to 12 bytes. The Sigfox radio protocol allows sending zero bits,
one single bit of information for binary applications (e.g., status), or an integer number of bytes.
Therefore, for 2 or more bits of payload, it is required to add padding to the next integer number of bytes. The reason for this
flexibility is to optimize transmission time and hence save battery consumption at the device.
 On the other hand, Downlink frames have a fixed length. The payload length MUST be 64 bits (i.e., 8 bytes). Hence, if less
information bits are to be transmitted, padding MUST be used with bits equal to 0.
 The receiver MUST remove the added padding bits before the SCHC reassembly process.

 Fragmentation Rules Examples
 This section provides an example of RuleID configuration for interoperability between the F/R modes presented in this document.
 Note that the RuleID space for Uplink F/R is different than the one for Downlink F/R; therefore, this section is divided in two subsections: Rules for Uplink fragmentation and Rules for Downlink fragmentation.

 For Uplink F/R, multiple header lengths were described in .
 All of them are part of the SCHC over Sigfox Profile and offer not only low protocol overhead for small payloads (single byte header) but also extensibility to transport larger payloads with more overhead (2-byte header, Options 1 and 2).
 The usage of the RuleID space for each header length is an implementation choice, but we provide an example of it in the following section.
 This illustrates implementation choices made in order to 1) identify the different header length and 2) finally parse the RuleID field to identify the RuleID value and execute the associated treatment.

 Uplink Fragmentation Rules Examples

 The RuleID field for Uplink F/R modes has different sizes depending on the header length.
In order to identify the header length and then the value of the RuleID, the RuleID field
 is interpreted as follows:

 The RuleID field is the first one to be parsed in the SCHC header, starting from the leftmost bits.

 For Single-byte SCHC Header F/R modes, a RuleID field of 3 bits is expected:

 If the first 3 leftmost bits have a value different than 0b'111, then it signals a Single-byte SCHC Header F/R mode.
 If their value is 0b'111, then it signals a Two-byte SCHC Header F/R mode.

 For Single-byte SCHC Header F/R modes:

 There are 7 RuleIDs available (with values from 0b'000-0b'110); the RuleID with value 0b'111 is reserved to indicate a Two-byte SCHC Header.
 This set of Rules is called "standard rules", and it is used to implement Single-byte SCHC Header modes.
 Each RuleID is associated with a set of properties defining if Uplink F/R is used and which Uplink F/R mode is used. As an example, the RuleID 0b'000 is mapped onto Uplink No-ACK Mode: Single-byte SCHC Header, and the RuleIDs 0b'001 and 0b'002 are mapped onto Uplink ACK-on-Error mode: Single-byte SCHC Header (2 RuleIDs to allow for SCHC Packet interleaving).

 For Two-byte SCHC Header F/R modes, at least 6 bits for the RuleID field are expected:

 The 3 first leftmost bits are always 0b'111.

 If the following 3 bits have a different value than 0b'111, then it signals the Two-byte SCHC Header Option 1.
 If the following 3 bits are 0b'111, then it signals the Two-byte SCHC Header Option 2.

 For the Two-byte SCHC Header Option 1, there are 7 RuleIDs available (0b'111000-0b'111110), 0b'111111 being reserved to indicate the Two-byte SCHC Header Option 2. This set of Rules is called "extended rules", and it is used to implement the Uplink ACK-on-Error mode: Two-byte SCHC Header Option 1.
 For the Two-byte SCHC Header Option 2, there are 2 additional bits to parse as the RuleID, so 4 RuleIDs are available (0b'11111100-0b'11111111). This set of Rules is used to cover specific cases that previous RuleIDs do not cover. As an example, RuleID 0b'00111111 is used to transport uncompressed IPv6 packets using the Uplink ACK-on-Error mode: Two-byte SCHC Header Option 2.

 Downlink Fragmentation Rules Example
 For the Downlink ACK-Always Mode: Single-byte SCHC Header, RuleIDs can get values in ranges from 0b'000 to 0b'111.

 Fragmentation Sequence Examples
 In this section, some sequence diagrams depict message exchanges for different fragmentation modes and use cases are shown.
In the examples, 'Seq' indicates the Sigfox Sequence Number of the frame carrying a fragment.

 Uplink No-ACK Examples
 The FCN field indicates the size of the data packet.
The first fragment is marked with FCN = X-1, where X is the number of fragments the message is split into.
All fragments are marked with decreasing FCN values.
	The last packet fragment is marked with FCN = All-1 (1111).
 Case No Losses - All fragments are sent and received successfully.

 Uplink No-ACK No-Losses

Sender Receiver
 |-------FCN=6,Seq=1-------->|
 |-------FCN=5,Seq=2-------->|
 |-------FCN=4,Seq=3-------->|
 |-------FCN=3,Seq=4-------->|
 |-------FCN=2,Seq=5-------->|
 |-------FCN=1,Seq=6-------->|
 |-------FCN=15,Seq=7------->| All fragments received
(End)

 When the first SCHC Fragment is received, the receiver can calculate the
total number of SCHC Fragments that the SCHC Packet is composed of.
For example, if the first fragment is numbered with FCN=6, the receiver can
expect six more messages/fragments (i.e., with FCN going from 5 downwards and the last fragment with an
FCN equal to 15).
 Case Losses on Any Fragment except the First

 Uplink No-ACK Losses (Scenario 1)

Sender Receiver
 |-------FCN=6,Seq=1-------->|
 |-------FCN=5,Seq=2----X |
 |-------FCN=4,Seq=3-------->|
 |-------FCN=3,Seq=4-------->|
 |-------FCN=2,Seq=5-------->|
 |-------FCN=1,Seq=6-------->|
 |-------FCN=15,Seq=7------->| Missing Fragment Unable to reassemble
(End)

 Uplink ACK-on-Error Examples: Single-Byte SCHC Header
 The Single-byte SCHC Header ACK-on-Error mode allows sending up to 28 fragments and packet sizes up to
300 bytes. The SCHC Fragments may be delivered asynchronously, and Downlink ACK can be sent opportunistically.
 Case No Losses
 The Downlink flag must be enabled in the sender Uplink message to allow a Downlink message from the receiver.
The Downlink Enable in the figures shows where the sender MUST enable the Downlink and
	wait for an ACK.

 Uplink ACK-on-Error No-Losses

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2----->|
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4----->|
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->|
DL Enable |-----W=0,FCN=0,Seq=7----->|
 (no ACK)
 |-----W=1,FCN=6,Seq=8----->|
 |-----W=1,FCN=5,Seq=9----->|
 |-----W=1,FCN=4,Seq=10---->|
DL Enable |-----W=1,FCN=7,Seq=11---->| All fragments received
 |<- Compound ACK,W=1,C=1 --| C=1
 (End)

 Case Fragment Losses in the First Window
 In this case, fragments are lost in the first window (W=0).
After the first All-0 message arrives, the receiver
leverages the opportunity and sends a SCHC ACK with the corresponding bitmap and C=0.
 After the loss fragments from the first window (W=0) are resent, the sender continues
transmitting the fragments of the following window (W=1) without opening a reception opportunity.
Finally, the All-1 fragment is sent, the Downlink is enabled, and the SCHC ACK is received with C=1.
	Note that the SCHC Compound ACK also uses a Sequence Number.

 Uplink ACK-on-Error Losses in the First Window

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2--X |
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4----->|
 |-----W=0,FCN=2,Seq=5--X | __
 |-----W=0,FCN=1,Seq=6----->| | W=0
DL Enable |-----W=0,FCN=0,Seq=7----->| Missing Fragments<- FCN=5,Seq=2
 |<- Compound ACK,W=0,C=0 --| Bitmap:1011011 | FCN=2,Seq=5
 |-----W=0,FCN=5,Seq=9----->| --
 |-----W=0,FCN=2,Seq=10---->|
 |-----W=1,FCN=6,Seq=11---->|
 |-----W=1,FCN=5,Seq=12---->|
 |-----W=1,FCN=4,Seq=13---->|
DL Enable |-----W=1,FCN=7,Seq=14---->| All fragments received
 |<-Compound ACK,W=1,C=1 ---| C=1
 (End)

 Case Fragment All-0 Lost in the First Window (W=0)
 In this example, the All-0 of the first window (W=0) is lost. Therefore,
the receiver waits for the next All-0 message of intermediate windows or All-1 message of last window to generate
the corresponding SCHC ACK, which indicates that the All-0 of window 0 is absent.
 The sender resends the missing All-0 messages (with any other missing
fragment from window 0) without opening a reception opportunity.

 Uplink ACK-on-Error All-0 Lost in the First Window

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2----->|
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4----->|
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->| DL Enable
	 |-----W=0,FCN=0,Seq=7--X |
 (no ACK)
 |-----W=1,FCN=6,Seq=8----->|
 |-----W=1,FCN=5,Seq=9----->| __
 |-----W=1,FCN=4,Seq=10---->| |W=0
DL Enable |-----W=1,FCN=7,Seq=11---->| Missing Fragment<- FCN=0,Seq=7
 |<-Compound ACK,W=0,C=0 ---| Bitmap:1111110 |__
 |-----W=0,FCN=0,Seq=13---->| All fragments received
DL Enable |-----W=1,FCN=7,Seq=14---->|
 |<-Compound ACK,W=1,C=1 ---| C=1
 (End)

 In the following diagram, besides the All-0, there are other fragment losses in the first window (W=0).

 Uplink ACK-on-Error All-0 and Other Fragments Lost in the First Window

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2--X |
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4--X |
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->|
DL Enable |-----W=0,FCN=0,Seq=7--X |
 (no ACK)
 |-----W=1,FCN=6,Seq=8----->|
 |-----W=1,FCN=5,Seq=9----->| __
 |-----W=1,FCN=4,Seq=10---->| |W=0
DL Enable |-----W=1,FCN=7,Seq=11---->| Missing Fragment<- FCN=5,Seq=2
 |<--Compound ACK,W=0,C=0 --| Bitmap:1010110 |FCN=3,Seq=4
 |-----W=0,FCN=5,Seq=13---->| |FCN=0,Seq=7
 |-----W=0,FCN=3,Seq=14---->| --
 |-----W=0,FCN=0,Seq=15---->| All fragments received
DL Enable |-----W=1,FCN=7,Seq=16---->|
 |<-Compound ACK,W=1,C=1 ---| C=1
 (End)

 In the next examples, there are fragment losses in both the first (W=0) and second (W=1) windows.
The retransmission cycles after the All-1 is sent (i.e., not in intermediate windows) MUST
always finish with an All-1, as it serves as an ACK Request message to confirm the correct reception
of the retransmitted fragments.

 Uplink ACK-on-Error All-0 and Other Fragments Lost in the First and Second Windows (1)

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2--X |
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4--X | __
 |-----W=0,FCN=2,Seq=5----->| |W=0
 |-----W=0,FCN=1,Seq=6----->| |FCN=5,Seq=2
DL Enable |-----W=0,FCN=0,Seq=7--X | |FCN=3,Seq=4
 (no ACK) |FCN=0,Seq=7
 |-----W=1,FCN=6,Seq=8--X | |W=1
 |-----W=1,FCN=5,Seq=9----->| |FCN=6,Seq=8
 |-----W=1,FCN=4,Seq=10-X | |FCN=4,Seq=10
DL Enable |-----W=1,FCN=7,Seq=11---->| Missing Fragment<-|__
 |<-Compound ACK,W=0,1,C=0--| Bitmap W=0:1010110
 |-----W=0,FCN=5,Seq=13---->| W=1:0100001
 |-----W=0,FCN=3,Seq=14---->|
 |-----W=0,FCN=0,Seq=15---->|
 |-----W=1,FCN=6,Seq=16---->|
 |-----W=1,FCN=4,Seq=17---->| All fragments received
DL Enable |-----W=1,FCN=7,Seq=18---->|
 |<-Compound ACK,W=1,C=1----| C=1
 (End)

 The figure below is a similar case as above but with fewer fragments in the second window (W=1).

 Uplink ACK-on-Error All-0 and Other Fragments Lost in the First and Second Windows (2)

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2--X |
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4--X |
 |-----W=0,FCN=2,Seq=5----->| __
 |-----W=0,FCN=1,Seq=6----->| |W=0
DL Enable |-----W=0,FCN=0,Seq=7--X | |FCN=5,Seq=2
 (no ACK) |FCN=3,Seq=4
 |-----W=1,FCN=6,Seq=8--X | |FCN=0,Seq=7
DL Enable |-----W=1,FCN=7,Seq=9----->| Missing Fragment--> W=1
 |<-Compound ACK,W=0,1, C=0-| Bitmap W=0:1010110,|FCN=6,Seq=8
 |-----W=0,FCN=5,Seq=11---->| W=1:0000001 |__
 |-----W=0,FCN=3,Seq=12---->|
 |-----W=0,FCN=0,Seq=13---->|
 |-----W=1,FCN=6,Seq=14---->| All fragments received
DL Enable |-----W=1,FCN=7,Seq=15---->|
 |<-Compound ACK, W=1,C=1---| C=1
 (End)

 Case SCHC ACK is Lost
 SCHC over Sigfox does not implement the SCHC ACK REQ message. Instead, it uses the SCHC All-1 message to request a SCHC ACK when required.

 Uplink ACK-on-Error ACK Lost

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2----->|
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4----->|
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->|
DL Enable |-----W=0,FCN=0,Seq=7----->|
 (no ACK)
 |-----W=1,FCN=6,Seq=8----->|
 |-----W=1,FCN=5,Seq=9----->|
 |-----W=1,FCN=4,Seq=10---->|
DL Enable |-----W=1,FCN=7,Seq=11---->| All fragments received
 | X--Compound ACK,W=1,C=1 -| C=1
DL Enable |-----W=1,FCN=7,Seq=13---->| RESEND ACK
 |<-Compound ACK,W=1,C=1 ---| C=1
 (End)

 Case SCHC Compound ACK at the End
 In this example, SCHC Fragment losses are found in both windows 0 and 1. However, the sender does not send a
SCHC Compound ACK after the All-0 of window 0. Instead, it sends a SCHC Compound ACK indicating fragment losses on both windows.

 Uplink ACK-on-Error Fragments Lost in the First and Second Windows with One Compound ACK

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2--X |
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4--X |
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->| __
DL Enable |-----W=0,FCN=0,Seq=7----->| Waits for |W=0
 (no ACK) next DL opportunity |FCN=5,Seq=2
 |-----W=1,FCN=6,Seq=8--X | |FCN=3,Seq=4
DL Enable |-----W=1,FCN=7,Seq=9----->| Missing Fragment<-- W=1
 |<-Compound ACK,W=0,1, C=0-| Bitmap W=0:1010110 |FCN=6,Seq=8
 |-----W=0,FCN=5,Seq=11---->| W=1:0000001 --
 |-----W=0,FCN=3,Seq=12---->|
 |-----W=1,FCN=6,Seq=13---->| All fragments received
DL Enable |-----W=1,FCN=7,Seq=14---->|
 |<-Compound ACK, W=1, C=1 -| C=1
 (End)

 The number of times the same SCHC ACK message will be retransmitted is determined by the
 MAX_ACK_REQUESTS.

 SCHC Abort Examples
 Case SCHC Sender-Abort
 The sender may need to send a Sender-Abort to stop the current communication. For example, this may happen if the All-1 has been sent MAX_ACK_REQUESTS times.

 Uplink ACK-on-Error Sender-Abort

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2----->|
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4----->|
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->|
DL Enable |-----W=0,FCN=0,Seq=7----->|
 (no ACK)
 |-----W=1,FCN=6,Seq=8----->|
 |-----W=1,FCN=5,Seq=9----->|
 |-----W=1,FCN=4,Seq=10---->|
DL Enable |-----W=1,FCN=7,Seq=11---->| All fragments received
 | X--Compound ACK,W=1,C=1 -| C=1
DL Enable |-----W=1,FCN=7,Seq=13---->| RESEND ACK (1)
 | X--Compound ACK,W=1,C=1 -| C=1
DL Enable |-----W=1,FCN=7,Seq=15---->| RESEND ACK (2)
 | X--Compound ACK,W=1,C=1 -| C=1
DL Enable |-----W=1,FCN=7,Seq=17---->| RESEND ACK (3)
 | X--Compound ACK,W=1,C=1 -| C=1
DL Enable |-----W=1,FCN=7,Seq=18---->| RESEND ACK (4)
 | X--Compound ACK,W=1,C=1 -| C=1
DL Enable |-----W=1,FCN=7,Seq=19---->| RESEND ACK (5)
 | X--Compound ACK,W=1,C=1 -| C=1
DL Enable |----Sender-Abort,Seq=20-->| exit with error condition
 (End)

 Case Receiver-Abort
 The receiver may need to send a Receiver-Abort to stop the current communication.
This message can only be sent after a Downlink Enable.

 Uplink ACK-on-Error Receiver-Abort

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2----->|
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4----->|
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->|
DL Enable |-----W=0,FCN=0,Seq=7----->|
 |<------ RECV ABORT ------| under-resourced
 (Error)

 Security Considerations
 The radio protocol authenticates and ensures the integrity of each message.
 This is achieved by using a unique Device ID and an AES-128-based message authentication code,
ensuring that the message has been generated and sent by the device (see , Section 3.8) or Network (see , Section 4.3) with the ID claimed in the message .
 Application data may or may not be encrypted at the application layer, depending on the criticality of the use case.
This flexibility allows a balance between cost and effort versus risk.
AES-128 in counter mode is used for encryption. Cryptographic keys are independent for each device. These keys are associated with the Device ID, and separate integrity and
encryption keys are pre-provisioned.
 An encryption key is only provisioned if confidentiality is to be used (see , Section 5.3; note that further documentation is available at Sigfox upon request).
 The radio protocol has protections against replay attacks, and the cloud-based core Network provides firewall protection against undesired incoming communications .
 The previously described security mechanisms do not guarantee end-to-end security between the device SCHC C/D + F/R and the Network SCHC C/D + F/R; potential security threats described in are applicable to the profile specified in this document.
 In some circumstances, sending device location information is
privacy sensitive. The Device Geolocation parameter provided by the
Network
 is optional; therefore, it can be omitted to protect this aspect of
the device privacy.

 IANA Considerations
 This document has no IANA actions.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 SCHC: Generic Framework for Static Context Header Compression and Fragmentation

 This document defines the Static Context Header Compression and fragmentation (SCHC) framework, which provides both a header compression mechanism and an optional fragmentation mechanism. SCHC has been designed with Low-Power Wide Area Networks (LPWANs) in mind.
 SCHC compression is based on a common static context stored both in the LPWAN device and in the network infrastructure side. This document defines a generic header compression mechanism and its application to compress IPv6/UDP headers.
 This document also specifies an optional fragmentation and reassembly mechanism. It can be used to support the IPv6 MTU requirement over the LPWAN technologies. Fragmentation is needed for IPv6 datagrams that, after SCHC compression or when such compression was not possible, still exceed the Layer 2 maximum payload size.
 The SCHC header compression and fragmentation mechanisms are independent of the specific LPWAN technology over which they are used. This document defines generic functionalities and offers flexibility with regard to parameter settings and mechanism choices. This document standardizes the exchange over the LPWAN between two SCHC entities. Settings and choices specific to a technology or a product are expected to be grouped into profiles, which are specified in other documents. Data models for the context and profiles are out of scope.

 Static Context Header Compression (SCHC) Compound Acknowledgement (ACK)

 Cisco

 Universitat Politecnica de Catalunya

 Universitat Politecnica de Catalunya

 IMT-Atlantique

 Concordia University

 NIC Labs, Universidad de Chile

 Sigfox Device Radio Specifications

 Sigfox

 Informative References

 CoAP Management Interface (CORECONF)

 Trilliant Networks Inc.

 consultant

 Acklio

 YumaWorks

 Universität Bremen TZI

 Work in Progress

 Network Configuration Protocol (NETCONF)

 The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]

 The Constrained Application Protocol (CoAP)

 The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine- to-machine (M2M) applications such as smart energy and building automation.
 CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead, and simplicity for constrained environments.

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 Low-Power Wide Area Network (LPWAN) Overview

 Low-Power Wide Area Networks (LPWANs) are wireless technologies with characteristics such as large coverage areas, low bandwidth, possibly very small packet and application-layer data sizes, and long battery life operation. This memo is an informational overview of the set of LPWAN technologies being considered in the IETF and of the gaps that exist between the needs of those technologies and the goal of running IP in LPWANs.

 Concise Binary Object Representation (CBOR)

 The Concise Binary Object Representation (CBOR) is a data format whose design goals include the possibility of extremely small code size, fairly small message size, and extensibility without the need for version negotiation. These design goals make it different from earlier binary serializations such as ASN.1 and MessagePack.
 This document obsoletes RFC 7049, providing editorial improvements, new details, and errata fixes while keeping full compatibility with the interchange format of RFC 7049. It does not create a new version of the format.

 Sigfox Callbacks

 Sigfox

 Sigfox Documentation

 Sigfox

 Acknowledgements
 has been funded in part by the Spanish Government
 through the TEC2016-79988-P grant and the PID2019-106808RA-I00 grant
 (funded by MCIN / AEI / 10.13039/501100011033) and by Secretaria
 d'Universitats i Recerca del Departament d'Empresa i Coneixement de
 la Generalitat de Catalunya through 2017 grant SGR 376 and 2021 grant SGR 00330.
 has been funded by the ERDF and the Spanish Government through project TEC2016-79988-P and project PID2019-106808RA-I00, AEI/FEDER, EU (funded by MCIN / AEI / 10.13039/501100011033).
 has been funded in part by the ANID Chile Project FONDECYT Regular 1201893 and Basal Project FB0008.
 has been funded by the ANID Chile Project FONDECYT Regular 1201893.
 The authors would like to thank , , , , , and for their useful comments and implementation design considerations.

 Authors' Addresses

 Montreal
 QC
 Canada

 j.c.zuniga@ieee.org

 Universitat Politècnica de Catalunya

 C/Esteve Terradas, 7
 Castelldefels
 08860
 Spain

 carles.gomez@upc.edu

 Universitat Politècnica de Catalunya

 C/Esteve Terradas, 7
 Castelldefels
 08860
 Spain

 sergio.aguilar.romero@upc.edu

 IMT-Atlantique

 2 rue de la Chataigneraie
 CS 17607
 Cesson-Sevigne Cedex
 35576
 France

 Laurent.Toutain@imt-atlantique.fr

 Concordia University

 1455 De Maisonneuve Blvd. W.
 Montreal
 QC
 H3G 1M8
 Canada

 sandra.cespedes@concordia.ca

 NIC Labs, Universidad de Chile

 Av. Almte. Blanco Encalada 1975
 Santiago
 Chile

 research@witu.cl

 Unabiz (Sigfox)

 Labege
 France

 juboite@free.fr
 https://www.sigfox.com/

