
Compiled from the OnyxRing article archive on
2/27/2004 1:13:54 AM

An Inform Developer's Guide

iwww.OnyxRing.com

T a b l e O f C o n t e n t s

About This Guide
 Introduction to the Printed Version ... 3
 Introduction .. 5
 FAQ ... 6
Backgrounders
 What is IF? .. 13
Baby Steps
 Starting Point ... 17
Intermediate Coding
 Arrays, strings and other Inform goodies ... 23
 Code Reuse: Developing a Personal Library ... 44
 Print Rules ... 48
 Bitwise and Logical Operators in Inform .. 54
Advanced Topics
 Inform Extensions Voodoo .. 69
 Advanced NPCs: Introduction ... 78
 Advanced NPCs, Part 1: Pronouns on Steroids .. 80
 Advanced NPCs, Part 2a: Conversation and Learning 90
 Advanced NPCs, Part 2b: Conversation and Learning 97
 Advanced NPCs, Part 2c: Conversation and Learning 111
 Advanced NPCs, Part 3: NPC Actions .. 120
Tutorials
 The Wade War Tutorial (place holder) .. 133
Informed Tips
 Randomizing Random .. 137
 Making VERBOSE the default mode ... 140
 Using TextPad with Inform .. 142
 REPLAYing command scripts ... 146
 Using SYSTEM_FILE & REPLACE in the Same Source 149
IF Theory
 NPC Conversations: Ask/Tell Theory .. 153

An Inform Developer's Guide

ii Table of Contents

An Inform Developer's Guide

1www.OnyxRing.com

Part A
About This Guide

An Inform Developer's Guide

2 About This Guide

Jim Fisher

3www.OnyxRing.com

An Inform Developer's Guide: Introduction to the printed version

This guide, in its latest form exists at www.OnyxRing.com. All of the articles
contained here are stored as HTML fragments in a database. When a browser
requests an article the HTML fragment is pulled from the database, munged
together with generic web-site code and displayed. This is how the site's article
archive has been designed and it has operated successfully in this fashion for
years now. One page, one article. For a time, everything was good... or so I
thought.

As the web site began to accumulate more and more regular hits, and the number
of articles began to grow, I began to receive innocent e-mail requests:

"Mr. Fisher, I really love your site, but I really
would like to print off all the articles at one time.
Can you produce a single version that I can print off?"

"Hey OnyxRing guy! It hurts my eyes staring at the
screen all the time. Can you produce a single version
of your Inform Guide?"

"Jim, I'm tired of this whole Internet thing and I
really hate having to look at your site's articles one
at a time. Can you produce a PDF file or something?"

"Look you lazy, Dweeb! You should quit holding Roger
Firth's awesome TextPad article hostage for site-hits
and share it everyone else. Why don't you make a PDF
file or something. The DM4 and IBG are both in that
format. It can't be that stinking hard, you selfish
twit!"

So, deciding to give in to this constructive stream of suggestions, I began to look
into what it would take to do a conversion. Obviously a major concern was the
frequency in which the site articles changed. A conversion needed to be relatively
painless since it would need to be updated frequently.

In the end, being a somewhat lazy individual (as one person pointed out), I wrote a
little code to do this for me. My HTML to PDF converter took a few weeks to write,
but seemed to be more or less successful at what I was trying to accomplish. If you
are reading this from Adobe Acrobat or flipping through a printed hard copy, then

Introduction to the Printed Version

4 About This Guide

you are reviewing the result.

Some of the articles translated extremely well to the printed version. Others
translated with a lesser degree of success. For example, the FAQ -- which was
designed to be read online -- is riddled with references to Cascading Styling Sheets
and the Article Rating System (neither of which exist in the printed version).
Hyperlinks also have not been translated so particularly ugly remarks akin to "click
here to see such-and-such" seem particularly out of place. As time goes by, I
hope to modify the articles to make them more agreeable to both web and printed
mediums.

Despite short comings in the translation, this product represents a sizeable
amount of work, and I am proud to present what has been repeatedly requested of
me for several years: An Inform Developer's Guide in PDF form, the most recent
version of which can be found at:

www.OnyxRing.com/downloads/AIDG.PDF

Thank you,

Jim Fisher

Jim Fisher

5www.OnyxRing.com

An Inform Developer's Guide: Introduction

et me begin with some clarification. As the name states, this is not
"THE Inform Developer's Guide." There are already several works on
the net that qualify as developer guides for the Inform language.
Hands down, the most widely viewed of these in the one written by the

author of Inform himself, Graham Nelson. If any work deserves to be called "THE
Inform Developer's Guide" it is that one. Instead, the name of this manual is "AN
Inform Developer's Guide." Again, that's "an", as in "one of several."

For those who do not know the history, Graham Nelson contributed greatly to the
IF community. This highly esteemed Oxford professor wrote the Inform compiler,
the standard Inform Library, and several acclaimed games. He wrote a number of
articles on the topic of adventure game design. Additionally, he wrote "The
Inform Designer's Manual." Without a doubt, Mr. Nelson made a tremendous mark
upon the IF community.

But Graham Nelson is only one man.

Different people learn in different ways. Some learn visually, while others learn
audibly. Some need to see a concept applied to understand its use. Others need
only the theory. Consider all the different ways to present a topic. Different
methods work best for different people. No single man can cover the entire
spectrum of presentation.

That's where this guide comes in. You see, I'M not writing it, YOU are. When a
developer learns Inform, he/she usually does so because of an idea for a game.
Every game is unique and each game applies aspects of IF that others do not. By
the time the game developer has finished writing it, he/she has also acquired a bit
of personal experience in design. It is this personal experience that you will find
in this guide, for the articles here are written by developers like you. One
developer may have a fair amount of experience developing NPCs. Another might
have written a game with extensive language modifications. It is by submitting
articles to this guide that other developers can share their experience with you.

It is by submitting articles to this guide that you can share your experience with
other developers.

FAQ

6 About This Guide

An Inform Developer's Guide FAQ

About the site:

Q: So is this a replacement for Graham Nelson's Designer's Manual?

A: Certainly not! The Designer's Manual is the undisputed standard. This guide
should be considered a supplement. As described in the Introduction, it is the
philosophy of this guide that different people learn in different ways. There may be
some duplication of content between this guide and the Inform DM, but a developer
with a different personal take will write it. It is our belief that the same information
conveyed in different words, from a different perspective, will often help to make the
topic clearer.

Q. What is this "rating" stuff?

A. Since the articles stored here are both "by" and "for" Inform developers, it makes
since that those same Inform developers rate whether or not they felt the article
was helpful. Article lists, such as the Table of Contents, show a ratio of positive
votes over total votes in parentheses. Additionally, the total number of times the
article has been viewed (even if not voted on) is also listed following a colon. For
example, "(4/5:23)" indicates that the article has been viewed 23 times and voted
on five times. Four of those five votes were positive, one of those votes was not.

Q. How do I rate an article?

A: At the top of every article, there is a box that gives the reader that ability to
vote (thumbs up or thumbs down). Just click the appropriate button and your vote
will be sent. After you have voted, the box will show the voting results for this
article.

Q: I don't get the ability to rate an article. Why not?

A: We put in a half-hearted attempt to discourage duplicate voting. Note that this
is not foolproof, nor is it intended to be. In truth it is more of a convenience to
remind the reader if they have already voted on an article. Still, the method used
relies upon cookies, and there are a few cases (such as cookies being disabled on
the client) where voting will not work. We apologize for any inconvenience.

Jim Fisher

7www.OnyxRing.com

Writing Articles:

Q: Hey! I developed a neat programming trick and I'd like to share it with others.
How can I get it posted in your guide?

A: Just send it in. Currently the policy of article addition to the database is wide
open. Provided there is nothing offensive, profane, or plagiaristic in the article, it
will be posted to the database in a reasonably short amount of time (i.e.: a few
minutes to a couple of days).

Q: So am I limited to just "Hints and Tips" types of work or can I do other, bigger
things.

A: Knock yourself out. You could write a series of large articles if you chose. Do
whatever you think will benefit the community.

Q: Okay, what format should I put my articles in?

A: All articles are stored in the database in HTML format. This is the preferred
form, but you can send the article in plain text if you would like. Although we will
not modify the content of the article, in some cases it is possible that we may
choose to modify the HTML tags for cosmetic reasons. If you are opposed to this,
just let us know.

Q: Okay I wrote an article and have a couple of charts that accompany it. How do
you handle that?

A: All article pictures will be stored in an "images" sub-directory named after
the author (without spaces). For example, suppose that John Smith wrote an
article which contains a picture named "NPCDiagram.jpg." The article's HTML
should reference the URL:

/images/JohnSmith/NPCDiagram.gif

Q: Fine, in addition to pictures I also have sample code that is too long to put in
the article. How can I include a sample file with my article?

A: Just like images, a directory will be created after the author's name under the
"downloads" directory. Similar to the above example, links would look like this:

FAQ

8 About This Guide

/downloads/JohnSmith/ExampleNPC.inf

Q: How do I send my stuff?

A: Just e-mail submissions to:
WebMaster@OnyxRing.com

Q: Okay, I wrote my article, and don't feel comfortable just "giving" it away. What
protects me?

A: As the author, you retain all copyrights. Your name is always listed at the top of
the article display page with a link to your e-mail address. At the bottom of the page
is a courtesy copyright notice stating that you, as the author, retain all rights.

Q: Is there a problem with posting my article on other sites as well?

A: None, whatsoever. It's your article; do with it as you please.

Q. I've noticed the use of images for Drop Caps in some of the articles. Are these
available for my articles as well?

A. Yes, although certainly not required, there is a set of drop cap images available
for use in any article. The images are housed in the following directory:

images/dropdown1/

Each image is a three-letter JPG that begins with "dd" and ends with the letter of
your drop cap. To use one of the site drop caps, use a variations of the following
examples:

his is a story...

or
nce upon a time, there was a...

or
t was the best of times, it was...

Q. I would like to distinctively format code and game transcript samples. How can I
do this?

A. Different authors choose to do this in different ways. The <PRE> tag has been
set up with a mono-spaced font for exactly this purpose and some authors choose
to use only that. Others may choose to take advantage of colors. Two CSS classes
have been implemented for your use: "source" and "game." Also, because
browsers implement colors differently, some authors find it best to utilize these

Jim Fisher

9www.OnyxRing.com

classes in a table, which wraps a <PRE>. The following HTML example will
demonstrate:

<table class=source><td><pre>

print "hello world";
</pre></td></table>

<table class=game><td><pre>

>x troll

She is ugly with green teeth. You cannot help but desire her.
</pre></td></table>

This displays as:
print "hello world";

>x troll
She is ugly with green teeth. You cannot help but desire her.

An Inform Developer's Guide

10 Backgrounders

An Inform Developer's Guide

11www.OnyxRing.com

Part B
Backgrounders

An Inform Developer's Guide

12 Backgrounders

Jim Fisher

13www.OnyxRing.com

What is IF?

F is an acronym for "Interactive Fiction." In the broadest sense of
the term, "Interactive Fiction" is any work of fiction with which the
reader/player interacts. To be reasonable, this could include
visually oriented games like Diablo or Ultima. Even shoot 'em up

games like Half-Life have a storyline to convey. But long before there were PCs
to be taken for granted, back when "computers" meant "mainframes" that occupied
entire rooms, and "cool graphics" meant correctly aligning the asterisks on the
amber terminal screen, there were "Text Adventures".

For the purposes of this site, and the vast majority of the interactive fiction
community, the terms "Interactive Fiction" and "Text Adventures" are synonymous.
Text adventures, as the name implies, are programs done entirely in text. I use
the qualification "programs" here to differentiate text adventures from written or
static works of text. Examples of such works are books like the "Choose Your Own
Adventure" series, and some more modern adaptations that exist in the form of
web pages, today. Although some would argue that these are indeed "Text
Adventures", they are outside the scope of what is generally being referred to when
the phrase is being used. In standard text adventures, the player typically types
out his intentions in plain English (or whatever other language the specific game
is targeted for) and the games attempt to "understand" what was meant and
perform the action.

Does that sound like AI? Not by today's standards, but in the Seventies, a "Natural
Language" interface to a computer was unheard of. Yes, text adventures certainly
seemed to bring reality several steps closer to Arthur C. Clark's 2001 vision of
HAL.

The Baby IF...

What is generally accepted as the first-ever text adventure is a mainframe program
written in the seventies, now known by the name "Colossal Cave". As is the case
with most subculture-creating pieces of work, "Colossal Cave" birthed derivative
works, such as "Adventure," which in turn served as a basis for many modern
pieces of IF.

The Adolescent IF...

What is IF?

14 Backgrounders

The company generally given credit for making huge advances in the interactive
fiction evolution is a company named Infocom. After producing dozens of text
adventures, Infocom went out of business (several years ago now) and sold the
rights to their games to Activision. Strangely enough, years after the company's
demise, Infocom works are still widely accepted as the defacto-standard in
interactive fiction.

Today's IF (All Grown Up)...

Since Infocom closed it's doors, many people have put intensive work into
furthering IF. Some have reverse-engineered the game files and executables of
the old Infocom games and created a documented standard from them
(Z-Machine). Because of this published standard, there are now dozens of
interpreters that can be used to play Z-Machine games (including the old Infocom
games). Interpreters exist for virtually any operating system, from a Linux
workstation to a Windows CE PalmPC. A language and compiler has also been
created (INFORM) and released as freeware. This compiler can be used to create
original Z-Machine games and carry on the Infocom legacy.

In addition to the Z-Machine standard, other IF development platforms have also
sprung into existence. The most accepted among these, which leads a close
second to INFORM, is TADS. There are more as well, such as HUGO, ALAN, and
ADRIFT. All of these can be located in the interactive fiction archive located at:
ftp://ftp.ifarchive.org/if-archive/

An Inform Developer's Guide

15www.OnyxRing.com

Part C
Baby Steps

An Inform Developer's Guide

16 Baby Steps

Jim Fisher

17www.OnyxRing.com

A Starting Point

here's a program that predates all other programs. It was written
before Windows or X, before DOS or BSD, before even CP/M or
TRS-DOS. It predates the PC entirely. You can find flavors of it
written in every programming language in existence. From assembler

to SQL, BASIC to C, Pascal to Fortran, Inform is no exception. Every programmer
in the world has typed in a variation of this program. Some versions of it are
complex. Others are simple. All share a common purpose: To provide the coder
with a an introduction to a programming language. What is its name? "Hello
World."

Several "Hello Worlds" exist for Inform already. Probably the most viewed of these
was written by Graham Nelson, the author of the Inform language, and can be
found in section 1.2 of his "Inform Designer's Manual." It is essentially what
follows:

 !This code was snatched from G. Nelson's
 !Designer's Manual 3 sect 1.2
 [Main;
 print "Hello World!^";
];

It is not all that inspiring, perhaps, but it does compile and when run, it does
exactly what you would expect it to: It prints the words "Hello World!" on the
display and then exits.

For a newbie Inform developer, there are several things that can be learned or
deduced about Inform from the above example:

 1) An exclamation point precedes comments.
 2) A method or routine is enclosed in brackets and
 followed by a semicolon.
 3) The method declaration (the name of the routine and
 parameters) is the first line of code inside the brackets.
 4) Like C, all lines of code end in semicolons.
 5) Also like C (there are numerous similarities between C and
 Inform), all Inform programs have acommon entry point
 method (or routine), named "Main."
 6) Additionally, this program gives us a glimpse of a basic
 Inform routine called "print" which will output
 data to the display

Perhaps I expect too much from a "Hello World" program, but I also feel that there
are also several things missing from that code that keep it from being a good
starting place for 99% of developers (In its defense, the example was not really
intended as a starting place. Mr. Nelson's finer example appears at the start of the

Starting Point

18 Baby Steps

DM's third chapter).

 1) The standard library is completely missing from the example.
 2) There are not sample rooms for the player to be located in.
 3) There are not sample objects for the player to interact with.
 4) There is no prompt for the player to type in commands.

In theory, you could implement 2, 3, and 4 without implementing the standard
library, but in reality you just don't. Why you ask? Simply put, the wheel is
already in existence. There is no reason to invent a new one from scratch. The
standard Inform library contains all things common among adventure games,
including rooms, objects, and input routines. C coders can think of it as the C
runtime library. A developer could choose to not use it and rewrite all the
standard routines such as "printf," or "scanf" from scratch using the "_asm"
keyword and low-level assembler code, but why? Even though they are different, C
and the C library are essentially the same thing. The same is true for Inform and
the Inform library.

So how do you reference the Inform library? Through includes. The inform library is
just code. It exists in a collection of files and you include it by including the
three main files in your source file via the include keyword (again, very much like
C). These three files are "Parser.h", "VerbLib.h", and "Grammar.h" (on some
machines the .h extension is dropped). Saddly, the placement and order of each of
the files is significant and has an impact on whether or not your source code will
compile.

The library looks for and expects certain things. Certain constants such as "Story"
and "Headline" are used to define information about your game. Additionally, the
Inform entry point has already been defined in the library. Now a routine named
"Initialise" is expected for game initialization.

What follows is a "Hello World" program, which can serve as a starting point for
coding any game. I personally keep a variation of this file stored in a "reuse"
directory on my personal machine and copy every time I write a new game. Feel
free to cut and paste it and change it to suit your preferences. Additionally, there is
a slightly modified version of this that will serve as the starting point for many
examples in later articles. It can be found here.

 Serial "000001";
 Release 1;
 !!
 ! Hello World
 !!
 ! General defines

Jim Fisher

19www.OnyxRing.com

 Constant Story "Hello World";
 Constant Headline "^Copyright (c) 2001: Jim Fisher^";
 #Include "Parser";
 #Include "VerbLib";
 !!
 ! Maps
 object PlainPlace "Plain Place"
 with description "There really isn't
 much here. Just a room with no exits."
 has light
 ;
 !!
 ! Movable Objects
 object disc "small disk" PlainPlace
 with name "small" "disk"
 , description "Engraved in this small disk
 are the words: ~Hello World!~"
 ;
 !!
 ! Code
 [Initialise;
 location = PlainPlace;
];
 #Include "Grammar";
 end;

An Inform Developer's Guide

20 Intermediate Coding

An Inform Developer's Guide

21www.OnyxRing.com

Part D
Intermediate Coding

An Inform Developer's Guide

22 Intermediate Coding

Zak McKracken (tr: Sonja Kesserich)

23www.OnyxRing.com

Arrays, strings and other Inform goodies

he Inform Designer's Manual (4th edition) dedicates sections 2.4 and
2.5 to the world of arrays. From this point on, arrays crop up
sporadically when it's necessary to explain how some function works
or how to achieve some programming somersault. Like many other

topics covered by the manual, you may find that while all the necessary information
is there, the author's need for brevity (in a 576 page book that wastes not one
single paragraph) leaves the novice with a feeling of "things a-happening beyond
my grasp". This article aims to provide the novice to Inform with a little background
material in order to more easily understand arrays.

Since the time when this article was written, Andrew C. Plotkin (aka. Zarf) has
brought forth Glulx, a new Inform Virtual Machine which lifts the memory
restrictions of the Z-Machine -- among other things. This made some parts of the
text incomplete and some code examples "disasters waiting to happen". We have
tried to bring the article up to date to cover Glulx compatibility and reduce
disasters to the minimum. Even if you don't know what we are talking about, don't
worry. Nothing that you read here will be hazardous to your games.

1. Basic concepts

An array is nothing more that an area in memory where a collection of data items
can be stored sequentially, one after the other. Each item is called an "entry" in the
array, and can be identified by the position it holds in the list. Example:

Position Item
0 18
1 2354
2 127
3 4535
4 16000

The "position it holds" may be called "entry number" or "index" of the array, while
the data "items" stored are simply "entries". Therefore we can say that, in the
above example, the third entry is 127, at position/index/entry number 2. Note that
in the example, the first index is 0. Some languages use 1 instead as the first index
of an array. Inform uses both depending on the particularities of the array, as we

Arrays, strings and other Inform goodies

24 Intermediate Coding

shall see.

Unfortunately, in order to understand how Inform manages arrays, it's useful to
know a little bit about how computers store data in memory.

You are probably aware that the most common information unit in computers is the
byte. One byte equals 8 bits, and since bits can take two values (0 or 1), there
are 256 different bit combinations in each byte (2 to the power 8). This implies
that if we want to store numbers in one byte, we can only handle quantities
between 0 and 255. If we wish to store a single character, we can only code 256
different characters (which sounds good enough for an European alphabet). In fact,
when storing characters, each one is encoded through a number (its ASCII code if
it's from the American alphabet, or its ISO 8859-X code for other West and Central
European alphabets -- which include local variations like the Spanish 'ñ'); that
means that the item stored in the byte is always a number.

Computers frequently combine several bytes to store larger data items. For
example, using two bytes together gives you 16 bits instead of 8 and, therefore,
65536 combinations (2 to the power 16). This is useful to encode characters from
exotic alphabets which offer more than 256 symbols, like the Unicode standard, or
for larger numbers (in the range from 0 to 65535). Computers and modern software
may use more bytes (3, which means 24 bits; or 4, which implies 32 bits). This
combination of bytes is called the "word size", so we may talk about a two-byte
word size (16 bits) or a four-byte word size (32 bits).

Inform may compile for the Z-machine, which is a Virtual Machine (VM)designed by
Infocom in 1.979 -- when memory was scarce --, or for Glulx, which is a new VM
designed by Andrew Plotkin with Year-2000-Computers in mind. The Z-machine
uses a two-byte word size while Glulx handles a four-byte word size. Most of your
Inform code will compile fine for both (an appealing thought), but we must be
careful when applying some calculations. We'll address this issue a bit later;
simply bear in mind that when we mention two-byte word size or 16 bits in relation
to the Z-machine, you may also read four-byte word size or 32 bits in relation to
Glulx.

Inform -- which was originally conceived to recreate the Z-machine -- uses
extensively this two-byte word size; in fact, every data type managed by Inform is
stored in two bytes -- numbers, objects, some text strings, dictionary words... all
of them are encoded in a 16-bit number and stored in a "word" (for those

Zak McKracken (tr: Sonja Kesserich)

25www.OnyxRing.com

conversant with 'pointers', let us say that everything in Inform are 16-bit
pointers to memory addresses on the Z-machine). Single bytes are best used to
store single characters.

When we wish to store an array in memory, we'll have to tell Inform if the items
will be bytes (small numbers) or words (bigger numbers). For single characters,
one byte should be enough, but if we have numbers or other data types in mind,
words are much better. In fact, words may handle all kinds of data; the only
advantage of a byte array is that it economises on memory.

2. Array declaration and usage in Inform

To declare an array, all we have to do is type the word "Array" followed by the
name we wish the array to have and the symbol -> (for byte arrays) or --> (for word
arrays). Finally, we indicate the number of entries (items) that our array will handle.

2.1 Byte Arrays

For instance:

 Array four_bytes -> 4;

would declare an array with four entries, each of which will be a byte, since we
have used the -> notation.

This generates a memory area with a size of 4 bytes, ready to store four small
numbers.

Index Item
0 0
1 0
2 0
3 0

***IT'S VERY IMPORTANT TO REMEMBER THAT BYTE ARRAYS START TO
NUMBER THEIR ENTRIES FROM 0***

Arrays, strings and other Inform goodies

26 Intermediate Coding

Let us suppose that we wish to assign the following items in the above array.

Index Item
0 25
1 130
2 240
3 1000

The last number can't be stored in a single byte, since it goes beyond the 255
limit, so we're sure to run into trouble. We'll soon see what happens.

These numbers can be assigned to the array in the following manner:

 four_bytes->0 = 25;
 four_bytes->1 = 130;
 four_bytes->2 = 240;
 four_bytes->3 = 1000;

We've said that the last entry is too big for a single byte. This won't cause a
complaint about the overflow problem at compile time, though. Inform will accept
the array if its syntax is correctly written but, because of the way numbers are
stored in bytes, our 1000 has been transformed into a different number. This will
cause bugs at run-time that will be difficult to diagnose.

That's why number storage is better reserved for word arrays. We'll keep byte
arrays just for single characters -- and they're only worth the effort if you really
must save on memory. Let's try another example with the same array declaration.

 Array four_bytes -> 4;

Index Item
0 'F'
1 'i'
2 's'

Zak McKracken (tr: Sonja Kesserich)

27www.OnyxRing.com

3 'h'

Now we want to store the four characters which form the phrase "Fish". To
accomplish this, we assign as follows:

 four_bytes->0 = 'F';
 four_bytes->1 = 'i';
 four_bytes->2 = 's';
 four_bytes->3 = 'h';

Observe the apostrophes -- or single quotation marks -- ('), as opposed to double
quotation marks ("). Just like in C, a single letter surrounded by apostrophes is
understood as "the ASCII code for this letter". (Note: If you put more than a single
character between apostrophes, the compiler thinks you are defining a dictionary
word. The use of single or double quotation marks is one of those syntactic niceties
in Inform which may require another article, but until then, look up
http://www.firthworks.com/roger/informfaq/ for the basics if you are interested).

We could now try to print these letters on the screen, perhaps with the aid of this
loop:

 for (i=0 : i<4 : i++)
 print four_bytes->i;

which means: set the variable i equal to 0; print the ith entry in the array and
increase the value of i by one; repeat while i remains less than four.

We expect the phrase "Fish" to appear on the screen, but what we actually get is
70105115104. Hey, what's going on? Well, each of the 'F' 'i' 's' 'h' letters has been
encoded in the array with a number (its ASCII code), 70 for 'F', 105 for 'i', 115 for
's' and 104 for 'h', and that's what the print statement has poured onto the screen,
all glued together (print won't use spaces unless we tell it to.)

How do we effectively print the actual characters? We must politely indicate to the
print statement that the item to output is a character (print is unaware of this,
since we could have stored numbers in the array -- unless we state our wishes
otherwise, print will always assume that we want to display a number.)

Arrays, strings and other Inform goodies

28 Intermediate Coding

The correct loop would be:

 for (i=0 : i<4 : i++)
 print (char) four_bytes->i;

And behold! We now succeed in getting Fish.

This way to assign data items to the array is a bit tiresome. Fortunately, Inform
accepts a much more comfortable syntax to achieve the same result:

 Array four_bytes -> 'F' 'i' 's' 'h';

Note that in this case we omit the number 4. Inform will count how many letters you
wish to store in the array and will reserve the required space automatically.

There's even a shorter syntax for this:

 Array four_bytes -> "Fish";

So instead of specifying each letter separately surrounded by single quotation
marks, we put them all together between double quotation marks. Once again
Inform counts four letters and reserves the required space for them.

In all of these examples, it has been the programmer's task to count how many
letters there are in order to code the printing loop -- you have to indicate in the
loop that the index goes from 0 to 3. This is tedious and error-prone (go on: make a
byte array and a printing loop for "supercalifragilisticexpialidocious" if you don't
believe it) and that's why string arrays exist.

2.2 String arrays (special byte arrays)

If we put "string" (with no quotes) instead of the -> symbol, we create a byte array
with a special structure which happens to be quite useful.

Zak McKracken (tr: Sonja Kesserich)

29www.OnyxRing.com

 Array a_few_bytes string 4;

This array declaration is just like the one we made before, but this time Inform
creates a memory area for *5* bytes (even though we have asked for 4). The extra
byte is used to store how many more bytes the array has. In our example, the extra
byte would hold the number 4 to indicate that the array has four free entries.

Index Item
0 4
1 0
2 0
3 0
4 0

This extra byte is always stored in the 0th entry of the index, and the
remaining bytes will go between 1 and 4. ***IT'S VERY IMPORTANT TO
REMEMBER THAT STRING ARRAYS NUMBER THEIR ENTRIES FROM 1*** --
unlike byte arrays, which started from 0.

Thus, if we want to store the letters "Fish" as in the previous examples, the
tedious method of assignment would be:

 a_few_bytes->1 = 'F';
 a_few_bytes->2 = 'i';
 a_few_bytes->3 = 's';
 a_few_bytes->4 = 'h';

which of course may be shorthanded with the known variations, letter by letter...

 Array a_few_bytes string 'F' 'i' 's' 'h';

...or "all together now":

Arrays, strings and other Inform goodies

30 Intermediate Coding

 Array a_few_bytes string "Fish";

With either "shorthand" method, Inform discovers that there are four letters and
therefore stores number 4 in the 0th index entry of the array. This way the
programmer doesn't need to know how many letters form the chosen phrase,
because it can always be read from the 0th entry. The loop needed to print the
stored letters would be:

 for (i=1 : i<=(a_few_bytes->0) : i++)
 print (char) a_few_bytes->i;

Please notice that the variable i now begins with a 1 (and not 0, like before) and
goes on while its value is less or equal than a_few_bytes->0 (the index entry that
holds the length of the string). Number 4 has disappeared from the loop, which is
now generic and can print strings of any length.

It's always a good idea to optimise code if you know how to. Suppose you have
several arrays and you wish to print their characters: you could copy and paste
the above loop and change the name of the array for each one of them, or you
could create a general-purpose printing routine:

 [char_array arr i;
 for (i=1 : i<=(arr->0) : i++)
 print (char) arr->i;
];

We now have a routine named char_array that defines two variables, arr (which will
be fed with the name of the current array) and i. We could make a call to the
routine from any point in our code, using either of these forms:

 char_array(a_few_bytes);

or

Zak McKracken (tr: Sonja Kesserich)

31www.OnyxRing.com

 print (char_array) a_few_bytes;

This way, the code necessary for printing characters stored in an array only
happens once in the whole program.

2.3 Word arrays

Storing single characters has its uses, but the time comes when we wish to work
with numbers, pointers (to functions, objects, messages) or dictionary words...
which is all the same to Inform, since everything is encoded as 16-bit numbers
(when compiling for the Z-machine) or 32-bit numbers (when compiling for Glulx).
A byte array is not enough to handle these data types. What we need now is a
word array.

Word arrays can be declared in the same manner as byte arrays, but we use the
--> notation instead of ->.

 Array four_words --> 4;

which creates a word array with four entries:

Index Item
0 0
1 0
2 0
3 0

Now Inform, when compiling for the Z-machine, reserves an 8-byte memory chunk
(because we want four elements, and each one of them requires two bytes).If, on
the other hand, you compile for Glulx, the memory area needed will be 16 bytes
(four bytes per entry).

To assign data items to the array entries, we do as before. First, the verbose
method:

Arrays, strings and other Inform goodies

32 Intermediate Coding

 four_words-->0 = 25;
 four_words-->1 = 130;
 four_words-->2 = 240;
 four_words-->3 = 1000;

You see that we now use --> instead of ->, because we are assigning words
instead of bytes. We discover that we have no problem this time to store number
1000, because it fits nicely in a word.

We can define the array in one line, by using the following syntax:

 Array four_words --> 25 130 240 1000;

Either way, we set up the array:

Index Item
0 25
1 130
2 240
3 1000

We could display the contents of the array with a loop:

 for (i=0 : i<4 : i++)
 print four_words-->i, " ";

And we'd get 25 130 240 1000.

As was previously the case with byte arrays, here the programmer must remember
that the array holds four entries, in order to specify which is the maximum possible
value of i in the above loop. This is a nuisance, so Inform provides a special word
array (just as string arrays are related to byte arrays) which is called a "table":

Zak McKracken (tr: Sonja Kesserich)

33www.OnyxRing.com

2.4 Tables (special word arrays)

When we declare the word array, we can use "table" (no quotes) in place of the -->
symbol. This generates a word array with a little extra structure which (again) turns
out to be quite useful.

 Array a_few_words table 4;

In this case (analogous to the string array), Inform reserves an extra entry in the
array (so that this array now needs 10 bytes = (4+1)*2 for the Z-machine or 20
bytes = (4+1)*4 for Glulx) which holds the number of entries minus itself -- so in
the example, a_few_words-->0 would hold number 4).

Index Item
0 4
1 0
2 0
3 0
4 0

***IT'S IMPORTANT TO REMEMBER THAT TABLES BEGIN TO NUMBER
ENTRIES FROM 1*** because the 0th entry is reserved to hold the length of the
array.

Example:

 Array a_few_words table 25 130 240 1000;

This too would create an array with five entries.

Index Item
0 4
1 25
2 130

Arrays, strings and other Inform goodies

34 Intermediate Coding

3 240
4 1000

Now let's display the contents of the table. We need another loop:

 for (i=0 : i<=(a_few_words-->0) : i++)
 print a_few_words-->i, " ";

3. Summary

The following table summarizes the different kinds of arrays, how to access their
entries and the allowed range for their entries. If the programmer ignores this range
and breaks the bounds of the array (by calling a->5 in a byte array with four entries,
for instance) the compiler will remain silent, but at run-time we'll get a glorious
crash.

Declaration Size of each entry Access to entries Entries range
Array abc -> 4 byte abc->i 0 ... 3
Array abc string 4 byte abc->i 0 ... abc->0
Array abc --> 4 word abc-->i 0 ... 3
Array abc table 4 word abc-->i 0 ... abc-->0

4. Basic concepts with a twist

4.1 String arrays are NOT strings

This is yet another one of those things that leads programmers into confusion.

A string array is a sequence of single characters stored in memory one by one
(each character takes one byte). You can access any single character through its
entry number. For instance:

 Array abc string "I like fish";

Zak McKracken (tr: Sonja Kesserich)

35www.OnyxRing.com

If we take a look at the value stored in abc->4, we'll get the fourth letter from the
text, in this case 'i' (well, we'd get its ASCII code, which is 105). In order to know
the length of the text, all we have to do is check abc->0.

No surprises so far. Everything behaves as it has been explained. C programmers
nod happily in understanding.

However, storing text through the use of arrays has a couple of snags:
1) They consume quite a lot of memory. A 1000 character text would take 1000 bytes.
Since text adventures are basically made of text, it would be desirable to store
text more sparingly.

2) Texts stored in arrays are visible in the compiled game file. If anyone cares to
take a look at the .z5 file (with any editor, even the ancient TYPE from DOS), "I
like fish" will stand out among the incomprehensible encrypted characters. An
impatient player could find hints and messages from the story file. If you do not
wish that to happen, we need a way to encrypt all texts so that unwanted peeking at
the story file reveals nothing.

That's why Inform encodes most of the texts in a way that compresses their size,
with a rough 2/3 ratio, and makes them gibberish without the appropriate
Z-machine interpreter.

This way of storing text is what Inform calls "strings", which is, perhaps
unfortunately, the same word used for "string" arrays, even if the meaning is quite
different. In this article, we shall call them "encrypted" strings as opposed to
"conventional" strings (which will stand for string arrays).

Any text in double quotes, "this one, for instance", is encoded by Inform as an
encrypted string, unless it's part of a string array declaration, in which case it
will be encoded as a conventional string. Example:

 Array abc string "I like fish";

 Global pqr = "But I don't like fishing.";

 Object river "gurgling river"
 with description "It's full of fish.";

In the first case, the string "I like fish" is encoded as a conventional string,
letter by letter, with no compression or encryption. Each character may be read
through its entries: abc->1, abc->2, etc.

In the other two examples, text is encoded as encrypted strings. They take up less
memory and are unreadable by curious eyes. On the other hand, it is impossible to

Arrays, strings and other Inform goodies

36 Intermediate Coding

read each character separately or to know the length of the encrypted strings,
because they are not arrays. Once the compiler has encrypted them, their values
get stored in the variable pqr as 16-bit numbers (with no apparent meaning).

If we try to

 print pqr;

we'd get that meaningless number. If we want to "decipher" the encrypted string
and discover the text, we have to use a slightly different syntax:

 print (string) pqr;

Now we get "But I don't like fishing." on the screen. This syntax, however, will not
work for abc, because abc is not an encrypted string. If, nevertheless, we try:

 print (string) abc;

the result will be unpredictable, because print (innocently unaware of our
mischievous intent) will try to decipher the contents of abc as it were an encrypted
string. The way to get at abc has already been shown; it requires a loop:

 for (i=1 : i<=(abc->0) : i++)
 print abc->i;

Object names and descriptions are encrypted strings too, but it's the library that
takes care of printing them when necessary -- using print(string), naturally.

4.2 Dictionary words are NOT strings

Inform builds up a dictionary with the words that the game will "understand" when
the player types them. For instance, the words given in the <name> property of an

Zak McKracken (tr: Sonja Kesserich)

37www.OnyxRing.com

object or the defined verbs. The dictionary will gather all the words surrounded by
single quotation marks that we write in our game. For instance:

 Object piranha "piranha"
 with name 'piranha',
 ...

Why do we repeat piranha so much? The first piranha -- with no quotes -- is the
inner name of the object. It will only be seen and used by the programmer when
he/she wants to refer to the piranha object. The second "piranha" -- in double
quotes -- is the word that the player will see when the game needs to mention the
piranha object (say, in an inventory). It's an encrypted string. The third 'piranha' --
in single quotes -- is the word that the player will be able to type when he/she
wishes to interact with the piranha. This will go in the game dictionary.

***CAUTION: Inform allows you to put double quotes around the third piranha and
it will still be understood as a dictionary word. This only happens in the
<name> property of an object and in the <verb> directive -- otherwise,
anything you write for properties between double quotes will be understood as
an encrypted string. DO NOT USE THIS UGLY AND CONFUSING PRACTICE.
The clearer the syntax, the clearer the concepts.***

A dictionary word may be stored in any global variable, like this:

 Global xyz = 'shark';

In this case, 'shark' is neither a conventional string nor an encrypted string. Inform
transforms it into a number (which is the place the word holds in the dictionary). If
we try to:

 print xyz;

we'd just get a meaningless number. If we try:

Arrays, strings and other Inform goodies

38 Intermediate Coding

 print (string) xyz;

the result will be chaos, because print will try to decipher the dictionary number
like it were an encrypted string (which it isn't). We can't read the individual
characters in 'shark' because it's not a byte array. The only way you could
eventually output the word 'shark' would be through:

 print (address) xyz;

The (address) modifier tells print to display the dictionary word whose number we
are providing.

4.3 Arrays as object properties

Most objects have a property which is, in fact, an array -- the "name" property. This
is an array whose entries will be the dictionary words that the player may use when
interacting with the object. Consult the end of section 3.5 in the Designer's Manual.
Another example of an array used as a property is found_in, which lists all the
locations you want a certain object to be in (useful for coding general scenery
fixtures like bushes, carpeting, or even the sun -- if it's visible from various places).

When arrays are used as properties and not as global variables (which was the
case of everything explained in 2), the syntax is different, because you don't need
neither the directive Array, nor any of the -> or --> symbols, nor the modifiers
"string" or "table". For instance:

 Object strange_thing
 with a_few_words 25 130 240 1000;

We declare an object called strange_thing. This is not your usual text adventure
object, because it lacks name and description, but from a programming point of
view, it's a perfectly valid object (Inform will compile it without a whimper).

This object has just one property called a_few_words (it's perfectly legal to create
our own properties, as explained in section 3.5 of the DM). It could store a number

Zak McKracken (tr: Sonja Kesserich)

39www.OnyxRing.com

or a collection of them. The difference resides in what we write after the property
name.

In the above example we write four numbers (separated just by spaces... no
commas, semicolons or any other punctuation), so Inform will understand that
a_few_words is in fact a collection of four items, with values 25 130 240 1000.
These collections will always become word arrays (it is actually impossible to make
a byte array out of a property), but this is hardly a limitation, since almost always
we'll want the property to hold 16/32-bit items. The question now is: how do we
read the entries of these arrays?

Let's try an apparently reasonable statement:

 print strange_thing.a_few_words;

This will print just the first entry of the property (in the example, number 25).
This would be all right if the property held just one value, but since we have
more, we might need to know: how many are there? and: how do we access each
one of them?

The answer is simple, but the syntax is a bit ugly. The value:

 strange_thing.#a_few_words

tells us how many bytes are there in the property (its "length"). We now reach the
place where all the previous ramblings about Z-machine's two-byte word size and
Glulx's four-byte word size become important.

Since the information we get from the value is the total number of bytes taken by
the whole property, in order to discover how many entries we've got, we need to
divide this global quantity by the number of bytes that store a single entry.

Remember that in the Z-machine, each entry from a word array was stored in two
bytes, while in Glulx it took up to four bytes. So it seems that, depending on the VM
you are planning to use, you should divide either by 2 or by 4 (this is true, and if
you divide wrongly you'll get in trouble). Fortunately, there is a way around this, as

Arrays, strings and other Inform goodies

40 Intermediate Coding

we shall soon see.

Now, the value:

 strange_thing.&a_few_words

is a word array which collects the numbers 25 130 240 1000 (remember that the
entry numbers begin with 0).

Suppose we want to print these numbers on the screen. On the days when we only
had Z-machine, we needed to code a loop thus:

 for (i=0 : i<(strange_thing.#a_few_words/2) : i++)
 print strange_thing.&a_few_words-->i, " ";

For Glulx, you should change

 i<(strange_thing.#a_few_words/2)

for

 i<(strange_thing.#a_few_words/4)

But what if you don't know what platform you'll be using? Well, you can use
cautious code for the undecided. There is a bi-platform library and a bi-platform
compiler for Inform so that you may compile your source code for either VM -- and
that's what you'll be using if you want to compile for Glulx. This compiler
predefines a needful constant named WORDSIZE: if you choose to compile for the
Z-machine, its value is set to 2, but if you compile for Glulx it will be set to 4. You
may then code:

Zak McKracken (tr: Sonja Kesserich)

41www.OnyxRing.com

 i<(strange_thing.#a_few_words/WORDSIZE)

and now the problem is almost out of the way.

Then again, you may not be sure yet if you'll want your game compiled with
Inform's Z-machine compiler (the original stuff written by Graham Nelson, which
is widely used and much beloved). The current version of Graham's compiler (6.21)
does not define WORDSIZE, so you need to add the following lines at the top of
your code, before any "Includes":

 #ifndef WORDSIZE;
 Constant TARGET_ZCODE;
 Constant WORDSIZE 2;
 #endif;

TARGET_ZCODE is another constant predefined in the bi-platform compiler (if you
are beginning to feel fascinated by these concepts, feel free to consult Zarf's
"The Game Author's Guide to Glulx Inform",
http://www.eblong.com/zarf/glulx/inform-guide.txt). The only snag is that we get a
compiler warning, since we define a constant -- TARGET_ZCODE -- that is not
used. You can avoid it (logically) by forcing a harmless use of the constant. If you
write:

 #ifndef WORDSIZE;
 Constant TARGET_ZCODE 0;
 Constant WORDSIZE 2 + TARGET_ZCODE;
 #endif;

you make TARGET_ZCODE equal to zero and add it to WORDSIZE. The constant
is in use (although altering nothing) so the compiler is happy. And, much more
importantly, our code will be ready to accept either set of Inform libraries or
compilers.

Back to properties. If the property were to hold encrypted strings or dictionary
words, we would still need the appropriate modifiers (string) or (address). For
instance:

Arrays, strings and other Inform goodies

42 Intermediate Coding

 Object stone "stone"
 with name 'pebble' 'stone' 'rock',
 description "It's an ordinary stone.";

If we wish to list on the screen the stock of dictionary words that the player can
use to refer to the stone, we would code:

 for (i=0 : i<(stone.#name/WORDSIZE) : i++)
 print (address) stone.&name-->i, " ";

If we only want to show the first of these words, we just need:

 print (address) stone.name;

And to show the description:

 print (string) stone.description;

This is because there's only one element in the description property. There could
be more than one (theoretically), in which case we would proceed thus:

 for (i=0 : i<(stone.#description/WORDSIZE) : i++)
 print (string) stone.&description-->i, " ";

I can hear you thinking "Why on earth am I going to need to list the dictionary
words of an object or its highly improbable multiple descriptions?", and you are
right, you'll probably never need to do so. However, you may define sometime a
property which holds various values and, if you want to access them, this is how
it's done. Understanding how things work and the philosophy of the language will
bear fruit some day.

That's it for now. Remember that a good practice is to borrow shamelessly other

Zak McKracken (tr: Sonja Kesserich)

43www.OnyxRing.com

people's code and to try to modify it, to see if things work as we expected.

5. What do I do now?

"That's a lot of handsome theory, but I didn't come here for a lecture. I want to
program my own games and I want to know the practical uses of arrays right now!"

Well, there's a couple of places you might want to check. Firstly, go back to the
DM, make a search for "array" and start looking at the examples. There's quite a lot
of them and you should be able to tell by now how the array bits fit in the puzzle.
Also, Marnie Parker's Inform Primer (http://members.aol.com/doepage/doefaq.htm
) covers in section 8 a few interesting working examples of array usage.

Code Reuse: Developing a Personal Library

44 Intermediate Coding

Code Reuse: Building a Personal Code Library

Reusable code and reasons to implement a "personal code library"

eusable code is the bomb. Every programmer that has been
programming for any length of time has reusable code somewhere. In
a perfect world that code would be easily accessible and generic
enough to simply drop into an existing work in progress. Sadly, all

too often, developers find themselves sorting through previously written source
files to refer to some algorithm or implementation coded years ago but again
needed. Once found, "cut and paste" is usually followed by lengthy modifications
that are required to get the old code to work in the new program.

At the most basic level, this "copy and modify" method still qualifies as reusing
code. Still, while virtually every developer at one time or another has used this
technique, it leaves something to be desired.

A far better way of reusing code is to implement a personal code library. Done
correctly, it allows for several advantages over non-library techniques:
 1) Code naturally tends to be more organized and programs
 become modular in nature.
 2) Reusing existing code speeds up development.
 3) Fewer bugs can be introduced if less coding is done so
 new projects are naturally more stable.
 4) When bug fixes are found and fixed in the library, they
 are automatically fixed in all other works that share
 the library.
 5) Shared code gives a common feel across all of your works
 giving them a sort of "signature."

It should be noted that there are several different ways of reusing code. The
techniques shown in this article have worked best for me, but the reader may
prefer different techniques. Keep an open mind, because my way is not the only
way.

Three steps to a personal code library

By just a few simple steps, a developer can build a library of customized code that
can be drawn upon with a few simple keystrokes. The first step, we've already
touched upon....

Step one, template code, is really the basis for any serious library. The
practice of making code templates consists simply of identifying code that you use
more than once (or are likely to use again) and saving it in a special file so that

Jim Fisher

45www.OnyxRing.com

it can be found more easily. A blank game is a prime example of a code template
(see "A Starting Point.")

Additionally, patches to the standard Inform Library, generic methods (like the
Center routine), and common classes from which specialized objects are inherited
are all good candidates for your library. Anytime a developer begins to search
through old code to copy into a new project, a flag should go up. This is an
indication that the code being tracked down is a good candidate for a template.
Once isolated, and the code is placed in its own file, it can be more easily found
and copied into a new project. Taking the time to identify what code is really
reusable is half the battle and will pay for itself in both organization and rapid
development.

There are con's associated with using this approach alone, however. While cutting
and pasting organized template code into a new project may speed up
development, it lends itself to an unorganized project. This method alone has a
tendency to begat spaghetti-code and special care needs to be taken to organize
the destination source file. Additionally, when a bug has been identified in a
template, it must be fixed in all projects in which the template was pasted. Luckily,
Inform hosts a directive that minimizes our need to "cut and paste."

Step two, the practice of including modules has several distinct advantages
that augment the power of template coding and address the irritations associated
with "cut and paste." The most notable advantage is shared code. Implemented via
Inform's #include directive, the same template can be referenced in multiple works.
Modifications to the shared file affect all referencing projects. A bug fixed in one,
is fixed in the others. This includes programs in which the bug has yet to be
identified. This leads to more stable and robust code throughout all of your works.

Again, there are some annoyances with this technique. Because of the nature of
the Inform compiler and the standard library, most template code cannot simply be
added to a game file in one large block (which is essentially all the #include
directive does.) Hidden in the back of "The Inform Designer's Manual" Appendix 11,
are directions concerning what goes where in an Inform Program. From this, you
can derive four sections (surrounding the standard library's #include's) where
library code needs to be placed:

 1) The REPLACE section - appears prior to the inclusion of
 Parser. REPLACE directives, used when modifying system
 routines, go here.
 2) The MESSAGE section - appears between the Parser and Verblib

Code Reuse: Developing a Personal Library

46 Intermediate Coding

 includes. Definitions of the LibraryMessages object,
 SACK_OBJECT, and the task_scores array goes here.
 3) The CODE section - appears between the Verblib and Grammar
 includes. Attribute, Property, Classes, and Object
 implementation goes here. Most implementation code is
 placed in this section.
 4) The GRAMMER section - appears following the Grammar include.
 All new Verb and Extend directives go here.

One possible, though not recommend, way of addressing this is by implementing
separate files for each section needed by a library entry and including them at the
appropriate location. Obviously this file juggling can be managed in a better way.
Again, Inform offers a better solution.

Step three, using conditional compilation, is the final technique needed to bring
everything talked about thus far together. Inform implements conditional
compilation with various #If... directives. While the #include directive adds code to a
file where none actually exists, these directives give the ability to ignore code in a
file that does exists. Using these directives, the compiler can selectively dismiss
sections of code and a large, diversified library can still produce a tight specific
program.

Creative use of these directives can cause a file to be interpreted differently each
time it is compiled. This allows us to address the hassles identified above but
coding a module to be interpreted differently depending on where in the program it
is included. As an added bonus, we can wrap all library includes into a "single
point of entry" include file and choose which library packages we include by
declaring constants. This makes for even cleaner code. Not bad.

The Framework and the Implementation

To the experienced developer, all of this coding with conditional directives means
one thing: a framework. Obviously the content of your personal library will vary
from developer to developer, but the implementation framework has already been
coded and is available to all. It contains everything you need to begin developing
and using a personal library. That is, a sample blank game template (implementing
the library), a library entry template, and a "single point of entry" file. Additional
library entries are also available for individual downloads, or a complete package of
every thing is also available. All of this for the great low price of a download click
from http://www.onyxring.com/orlibrary.aspx.

As always, the best way to learn is to look at the code. There are several
comments inside each of the files that describe how to use it.

Jim Fisher

47www.OnyxRing.com

Happy coding.

Print Rules

48 Intermediate Coding

Print rules
This topic is about using Inform's print statement. Everything said here for print
applies also to print_ret-- remember that these are exactly equivalent:

printstuff_to_be_printed; new_line; rtrue;

printstuff_to_be_printed; print "^"; return true;

print_retstuff_to_be_printed;

The print statement can be used like this:

printterm;

printterm;

...

printterm;

However, since it's just about the only statement where commas play a significant
role, you'll more often see it in this form:

printterm, term, ... term;

where you must have at least one term and can have as many as you like. Inform
copes automatically with literal numbers and strings; this example outputs the
expected "2 plus 3 is equal to 5." result:

print 2, " plus ", 3, " is equal to ", 2+3, ".^";

Things get more interesting as soon as you start to use variables. Consider these
two examples:

x = 2+3;

print 2, " plus ", 3, " is equal to ", x, ".^";

x = " is equal to ";

print 2, " plus ", 3, x, 2+3, ".^";

The first still works fine, but the second produces the somewhat baffling "2 plus
3197685." which isn't at all what you want to find; between the "3" and the "5",
where you'd hoped to see the phrase " is equal to ", you've instead got the
mysterious number 19768. What's going on? Simply this: each Inform variable is
stored in a single computer word -- that's just sixteen bits (or thirty-two bits in

Roger Firth

49www.OnyxRing.com

Glulx) -- fine for holding a number such as the result of adding 2 and 3, but far too
small to hold a long string of characters like " is equal to ". Instead, the Inform
compiler places those characters in a special memory area dedicated to holding all
of the game's strings, and stores a pointer into that area -- the string's address --
in the variable. That's what "19768" is: the memory address where the phrase can
be found.
So, how do you print what you want: the string itself rather than its fairly
meaningless memory address? Like this:

x = " is equal to ";

print 2, " plus ", 3, (string) x, 2+3, ".^";

The general message coming out of all this is that, unless told otherwise, Inform
treats each variable value simply as a number to be printed in signed decimal
format. If you know better -- that the value has to be printed in some other format
-- you need to explicitly say so. Typical cases are where:
· the value isn't actually a number as such, but rather an address of an

Inform item such as a string, object, or word in Inform's dictionary;
· the value is a number, but you don't want it printed in signed decimal

format, but instead in words, or as a hexadecimal value, or whatever;
· the value is an encoded representation of some data which needs to

be decoded or transformed before being printed.

Built-in rules
The way that you say to Inform "treat the following value specially, rather than just
print it as a decimal number" is by using a rule: a word in parentheses immediately
before the value. That's what (string) is -- a rule that tells Inform to treat what
follows as the address of a string to be printed. Several built-in rules are available:
(number)expr
(char)expr
(string)addr
(address)addr
(name)addr
(a)addr
(the)addr
(The)addr
(ItorThem)addr
(ThatorThose)addr
(CThatorThose)addr
(CTheyorThats)addr
(IsorAre)addr

the expression's value in words [1]
 the expression's value as a single character
 the character string at this address [1]
 the dictionary word at this address
 the name of the object at this address
 the object's name preceded by "a/an/some" [2]
 the object's name preceded by "the" [3]
 the object's name preceded by "The" [3]
 "him/her/it/them" [4]
 "him/her/that/those" [4]
 "He/She/That/Those" [4]
 "He's/She's/That's/They're" [4]
 "is/are" [4]

Print Rules

50 Intermediate Coding

Note 1: There's an important distinction between an expr and an addr: you can
perform arithmetic in the former, not in the latter. (number) 2+3 and (char) 'q'-1
will both work, but (string) "Christmas"-5 and (name) self_obj+8 are recipes for
disaster.
Note 2: Unless the object has an article property or a proper attribute.
Note 3: Unless the object has a proper attribute.
Note 4: The appropriate value is determined the attributes of the object at this
address.
Homegrown rules
The built-in print rules are very useful, but there's nothing to stop you adding
extra ones of your own. All you need do is write a routine of the desired name,
taking a single parameter which is the value to be printed. The Inform Designer's
Manual (Edition 4/1 §1.12) provides a sample hex() routine so that you can, for
example, print (hex) -4 to produce the output "fffc". (Caution: don't use the
equivalent routine from the DM Edition 3 -- it mishandles negative numbers.) Also,
Card() in §2.4 decodes a number 0..51 into a playing card. Here are a few other
examples.
Possesive pronouns. Like (a) and (the), to print "his/her/its/their" to suit the
specified object; see also DM 4 Exercise 62:

[hisorher x;
 if (x has pluralname) print "their";
 else if (x hasnt animate || x has neuter) print "its";
 else if (x has female) print "her"; else print "his";
];
. . .
print "In the bed dozes ", (a) NPC1, ", twitching and muttering under ", (hisorher)
NPC1, " breath.";

Non-zero numbers. A version of the standard (number) rule which print "no"
instead of "zero":

[nznumber x; if (x > 0) print (number) x; else print "no";];
. . .
print "You have ", (nznumber) coins.number, " coins left to spend.";

Typographic control. Switching into boldface or underlined/italicized type
normally requires a separate style statement. Here, you can control the typography
(of a string) within a print statement:

[b x; style bold; print (string) x; style roman;];
[u x; style underline; print (string) x; style roman;];

Roger Firth

51www.OnyxRing.com

. . .
print "...and can print in ", (b) "bold face", " as well as using ", (u) "italics",
".";

Decoding. Sometimes, you work internally with encoded values which need to be
turned into string representations only at the instant of being printed. For example,
a day-of-the-year (1..365) is transformed into a meaningful date (no, it doesn't
handle leap years):

[dayofyear x; switch (x) {
 1 to 31: print (ordinal) x, " January";
 32 to 59: print (ordinal) x- 31, " February";
 60 to 90: print (ordinal) x- 59, " March";
 91 to 120: print (ordinal) x- 90, " April";
 121 to 151: print (ordinal) x-120, " May";
 152 to 181: print (ordinal) x-151, " June";
 182 to 212: print (ordinal) x-181, " July";
 213 to 243: print (ordinal) x-212, " August";
 244 to 273: print (ordinal) x-243, " September";
 274 to 304: print (ordinal) x-273, " October";
 305 to 334: print (ordinal) x-304, " November";
 335 to 365: print (ordinal) x-334, " December";
 default: print "BAD DATE";
 }];
[ordinal x; print x; switch (x) {
 1, 21, 31: print "st";
 2, 22: print "nd";
 3, 23: print "rd";
 default: print "th";
 }];
. . .
print "Today's date is ", (dayofyear) somedate, ".";

Monetary values. Suppose your game involves cash transactions -- acquiring and
spending 'real' money rather than notional zorkmids or gold coins. You might
choose to store a monetary value in a variable, for example in units of cents or
pennies; that way, you can easily add to and subtract from your cash float. Here's
a rule which prints such as variable as a monetary value (for example, it prints
1234 as $12.34). Because you can't have negative cash amounts, it treats the
variable as an unsigned value in the range 0..65535 ($0.00 to $655.35). If you
need to deal with larger amounts, you're on your own.

[cash x
 a b c d e;
 if (x < 0) {
 x = x & $7FFF; e = x%10 + 8; x = x/10 + e/10 + 3276; e = e%10;
 }
 else { e = x%10; x = x/10; }
 d = x%10; x = x/10; c = x%10; x = x/10; b = x%10; a = x/10;
 print "$";
 if (a) print a;
 if (a || b) print b;
 print c, ".", d, e;
];
. . .
print "Tallying your possessions, you find you have ", (cash) player.cashfloat, "
in ready money.";

Print Rules

52 Intermediate Coding

Discarding return values. Consider this (erroneous) example, where you invoke a
routine which produces its own output:

[dow d m y
 a b;
 ! Algorithm from http://www.tondering.dk/claus/calendar.html
 a = (14-m) / 12;
 b = (y-a);
 a = (d + (m+(a*12)-2)*31/12 + b + b/4 - b/100 + b/400) % 7;
 switch (a) {
 0: print "Sunday";
 1: print "Monday";
 2: print "Tuesday";
 3: print "Wednesday";
 4: print "Thursday";
 5: print "Friday";
 6: print "Saturday";
 }
];
. . .
print "Christmas Day falls on a ", dow(25,12,2001), " this year.";

What happens, when you run this, is that the dow() routine generates its output
and returns, whereupon the print statement outputs the value returned by the
routine, usually "1" (representing true). There are several ways of preventing this
spurious "1" from being printed. You can split the print into its component
statements:

[dow d m y; ... 6: print "Saturday"; }];
. . .
print "Christmas Day falls on a ";
dow(25,12,2001);
print " this year.";

Alternatively, you can (sometimes) rewrite the routine to return a value rather than
printing it:

[dow d m y; ... 6: return "Saturday"; }];
. . .
print "Christmas Day falls on a ", (string) dow(25,12,2001), " this year.";

However, easier than either of these is simply to create a rule which absorbs and
ignores the unwanted value returned by the routine:

[dow d m y; ... 6: print "Saturday"; }];
[ignore;];
. . .
print "Christmas Day falls on a ", (ignore) dow(25,12,2001), " this year.";

Be sure that you're comfortable with the difference between print (someroutine) x;
 and print someroutine(x); -- they both call someroutine() with x as a parameter,
but whereas the output produced by the former is only what (if anything) the routine
itself prints, the latter additionally outputs the value returned by the routine, which

Roger Firth

53www.OnyxRing.com

is often "1".

Bitwise and Logical Operators in Inform

54 Intermediate Coding

BITWISE AND LOGICAL OPERATORS IN INFORM

n a programming language like Inform, the operators are those little
symbols such as + - * / = which combine numbers and variables to
form expressions. For example, when you see something like:

 average = (x + y)/2;

you're looking at an Inform statement which uses an assignment operator "=", an
addition operator "+" and a division operator "/", plus a pair of parentheses (...) to
ensure that the addition happens before the division. Even if the word "operator"
itself isn't familiar to you, the role of arithmetic symbols like these shouldn't come
as much of a surprise. Likewise, you're probably fairly comfortable with conditional
operators such as ">=", which tests if one value is greater than or equal to another
value:

 if (average >= 7) print "Well done!";

Sections 1.6 through 1.8 in the Inform Designer's Manual introduce the operators
which are most frequently found, and Table 1 provides a full list. As well as the
commonplace arithmetic and conditional operators, there are others whose
behaviour is sometimes less intuitive. This article focuses on two families which
are easily confused -- bitwise operators and logical operators -- and explains their
different uses.

1. Binary Numbers

Before getting started on the operators, we need to touch briefly on how data is
stored. Computers munch down all information thrown at them and finally convert it
into Binary, a base-2 numbering system of 0's and 1's. Binary represents electrical
impulses either in an ON or OFF state, just like switches. The computer deals only
in the flow of impulses; humans need to devise conventions so that certain
combinations of these two digits represent numbers, letters, pixels, musical tones
or any other kind of data.

Sonja Kesserich

55www.OnyxRing.com

When you type a number as part of a program, Inform assumes that you've typed
a decimal (base-10) number unless you include a special prefix. There are two of
these: "$" introduces a hexadecimal (base-16) number, and "$$" introduces a
binary (base-2) number -- see section 1.4 of the DM. For example, here are the
three ways of typing the number of years in a century:

 100 $64 $$1100100

All of those have the same value (though the first form is the most common and
natural-looking), and they're all stored in the computer in the same way (in binary
-- the third form). As another example, the three numbers:

 100 $100 $$100

are in everyday decimal worth respectively: one hundred, two hundred and
fifty-six, and four. In this article, we won't mention hexadecimal numbers again,
and we'll use "$$" to denote a binary number.

Inform works both with 16-bit numbers (for the Z-Machine) and 32-bit numbers (for
Glulx) -- "bit" stands for BInary digiT. This means that each of your numbers is
converted to a sequence of either sixteen or thirty-two bits, each bit having a value
of 1 or 0.

A 16-bit number (Z-Machine):

 $$1001100011100101

A 32-bit number (Glulx):

 $$00001100111010010011100110101100

2. Bitwise Operators

Working directly with binary values is cumbersome; fortunately, you rarely need
to. There are occasional situations, however, when programmers want to (or have
to) work with low-level data, and this is where the bitwise operators make an
appearance.

Bitwise and Logical Operators in Inform

56 Intermediate Coding

Inform defines three bitwise operators, which enable you to manipulate the
individual bits in a number:

 & bitwise AND operator merges two numbers
 bitwise OR operator merges two numbers
 ~ bitwise NOT operator changes one number

The & (AND) operator compares and merges two numbers bit by bit. For each of
the 16 (or 32) comparisons, the output bit at that position is set to 0 unless both bits
being compared are 1, in which case it too is set to 1 (that is, an output bit is set to
1 if the first input bit AND the second input bit are 1). So:

$$1010 & $$1100 evaluates to $$1000

(Note: You may find this clearer if you write it with the equivalent bits vertical
aligned:

$$ 1 0 1 0 &
$$ 1 1 0 0
------------- evaluates to
$$ 1 0 0 0

where you can see that both input bits are 1 only in the leftmost case.)

The | (OR) operator compares and merges two numbers bit by bit. For each of the
16 (or 32) comparisons, the output bit at that position is set to 1 unless both bits
being compared are 0, in which case it too is set to 0 (that is, an output bit is set to
1 if the first input bit OR the second input bit is 1). So:

$$1010 | $$1100 evaluates to $$1110

The ~ (NOT) operator inverts all of the bits of a number, changing each 0 to 1, and
1 to 0. So:

~$$1100 evaluates to $$0011

(Note: We are using small numbers for the sake of clarity. $$1100 should be read
as $$0000000000001100 on the Z-machine,

Sonja Kesserich

57www.OnyxRing.com

$$00000000000000000000000000001100 on Glulx. This would only affect -- in the
examples -- the NOT result, where all 0's to the left of our defined number turn into
1's.)

So far, so good; you can study the binary bit patterns and see what's going on. But
remember, it's perfectly valid to use a bitwise operator with decimal numbers:

100 & 20

You have to bear in mind that the operator always works on the bit patterns of
the decimal numbers. If you were to read this expression using normal English,
you might say "100 AND 20", which perhaps sounds like the result would be 120.
But:

$$1100100 & $$0010100 evaluates to $$0000100 (4 in decimal notation)

Also, 100 | 20 is worked as $$1100100 | $$0010100, which evaluates to
$$1110100, 116 in decimal notation.

You can demonstrate this using the example program in section 1.4 of the DM, with
a small variation:

 [Main x y;
 x=100; y=20;
 print "Today's number is ", x & y, ".^";
];

This outputs:

 Today's number is 4.

The basic print statement always outputs decimal numbers. To see the result in
binary, you might use:

 [Main x y;
 x=100; y=20;
 print "Today's number is ", (bin) x & y, ".^";

Bitwise and Logical Operators in Inform

58 Intermediate Coding

];
 [bin x i;
 print "$$";
 for (i=16 : i>0 : i--) {
 if (x < 0) print "1"; else print "0";
 x = x + x;
 }
];

In theory, you can apply bitwise operations to lots of thingies, if you understand
their binary representation. In practice, when coding a normal Inform game you'll
probably be using bitwise operators with the same frequency as Mandarin
Chinese...

3. Logical operators

Whereas the bitwise operators are fairly rare, you'll frequently encounter the logical
operators, usually in conditional statements like if and while. Happily, they're also
easier to understand, since their only concern is whether a number is false (that
is, zero) or true (any non-zero value). For this section, we don't need to worry
about binary bit patterns.

There are three logical operators:

&& logical AND operator tests two numbers
|| logical OR operator tests two numbers
~~ logical NOT operator tests one number

In each case, the result of the test can only be false (0) or true(1).

The && (AND) operator determines whether both numbers are true. So:

 x && y

evaluates to 1 if x is true and y is true , and otherwise to 0. Note that the tests are
performed left-to-right: if x turns out to be falsethen the result is bound to be 0, so
the game doesn't bother testing y.

The || (OR) operator determines whether either number is true . So:

Sonja Kesserich

59www.OnyxRing.com

 x || y

evaluates to 1 if x is true or y is true , and otherwise to 0. Note that the tests are
performed left-to-right: if x turns out to be truethen the result is bound to be 1, so
again the game doesn't bother testing y.

The ~~ (NOT) operator inverts a number, changing true to false and false to true.
So:

 ~~x

evaluates to 0 if x is true , and otherwise to 1.

(Note: You should be aware of the way Inform handles the precedence of either
bitwise and logical NOT operators. Please check
http://www.firthworks.com/roger/informfaq/ for more information).

Here again is the example program in section 1.4 of the DM, now showing a logical
operation:

 [Main x y;
 x=100; y=20;
 print "Today's number is ", x && y, ".^";
];

This outputs:

 Today's number is 1.

and if you change "y=20;" to become "y=0;", you'll get:

Bitwise and Logical Operators in Inform

60 Intermediate Coding

 Today's number is 0.

The examples in this section have shown the logical operators testing the values
of variables x and y. More commonly, though, you find them working on the
outcome of the conditional operators. For example:

 (x > y) && (x < z)

evaluates to 1 if x is greater than y and less than z, and otherwise to 0. Another
example:

 (x == 7) || (y == 52)

evaluates to 1 if x is 7 or if y is 52, otherwise to 0.

Here's a more interesting example:

 Object box "box" Physics_lab
 with name 'black' 'box',
 description "It's a box with a strange mechanism attached to it.";
 before [;
 Open: if (Schroedinger in Physics_lab || student in Physics_lab)
 "~Halt!~, screams a voice, ~You arre interrferring vith a most
 necessarry experriment!~";
],
 after [;
 Open: if (kitten in self && radiation_source has is_decayed)
 "There's a dead kitten inside the box.";
],
 has static container openable;

The before routine intercepts the player's curiosity if either Erwin Schroedinger or
his student are hanging around in the physics' laboratory. The after routine shows
the macabre contents of the box if there is a kitten inside and if the radiation
source has decayed (releasing the infamous poison gas).

4. Comparing Bitwise and Logical operators

The bitwise and logical operators are similar because:

Sonja Kesserich

61www.OnyxRing.com

· they use the same names: AND, OR and NOT.

· they use the same symbols: & | ~ for the bitwise operators, && || ~~ for the logical
operators.

However, they are different because:

· the bitwise operators treat each of the 16 (or 32) bits in a number individually
(roughly like the arithmetic operators do), whereas the logical operators consider all
16 (or 32) bits as a single entity (roughly like the conditional operators do).

· the result of a bitwise operation can be any numeric value (for the Z-machine,
-32768..0..32767), whereas the result of a logical operation can only ever be 0 or
1.

The differences are important because, if you use the wrong operator, your game
will still compile; worse, it will work correctly some of the time. For example, this
statement:

 if (x && y) print "CORRECT^";

prints CORRECT if both x or y are true (that is, non-zero). This statement is
probably wrong:

 if (x & y) print "DUBIOUS^";

because it will print DUBIOUS if the operation x&y evaluates to a non-zero quantity
(the bit patterns of x and y must have one digit set to 1 in the same position).
Here's another example:

 if (~~x) print "CORRECT^";

Bitwise and Logical Operators in Inform

62 Intermediate Coding

print CORRECT if x is false (that is, zero). This statement is also probably wrong:

 if (~x) print "DUBIOUS^";

because it will print DUBIOUS for all values of x apart from -1.

5. A "bit" of praxis

As we said, you are not likely to use bitwise operators unless you need to
perform some low-level data manipulation or become concerned about wasting
memory. Adam Cadre, author of many superb IF pieces, has published a library
extension called Flags.h (it's part of a menu-based conversational system, used to
manage what had been already said and when). You will find it here:

 http://www.ifarchive.org/if-archive/infocom/compilers/inform6/library/contributions/

At the beginning of this file, he justifies its existence thus:

 "This is a simple system to provide on/off flags that only take up one bit of memory; thus,
 there's no need to waste memory by declaring a variable such as "doneflag" or some such,
 allocating an entire eight bits to a variable that will never be anything other than 0 or 1."

You'll find a fine example of bitwise operator's usage in Flags.h, and although it's a
surprisingly short piece of code, it's not easy to follow until you feel comfortable
with some topics in Inform, such as arrays, routine calls and return values, and --
naturally -- bitwise operators.

On the other hand, logical operators abound in games. Each time you need to test
for more than one condition going on (or definitely not going on) in a given
scenario, a logical operator will elbow its way into your code with startling ease.
Let's take a look at some common examples.

5.1 Using a logical AND

Suppose you want to do something (here denoted by printing YES) when x is 1 at
the same time as y is 2. Here's one way:

Sonja Kesserich

63www.OnyxRing.com

 if (x == 1)
 if (y == 2)
 print "YES^";
 else
 print "NO^";
 else
 print "NO^";

Hard to read, error-prone, repetitious: ugh! Much much better like this:

 if ((x == 1) && (y == 2))
 print "YES^";
 else
 print "NO^";

5.2 Using a logical OR

Same sort of thing; you want to do something when x is 1 or when y is 2. The
clunky way:

 if (x == 1)
 print "YES^";
 else
 if (y == 2)
 print "YES^";
 else
 print "NO^";

and the sexy way:

 if ((x == 1) || (y == 2))
 print "YES^";
 else
 print "NO^";

5.3 Using a logical NOT

You don't want to do anything unless x is 1 and y is 2

 if ((x == 1) && (y == 2))
 else
 print "YES^";

Bitwise and Logical Operators in Inform

64 Intermediate Coding

It somehow feels 'wrong' to need an else clause in these circumstances. Better to
invert the condition:

 if(~~((x == 1) && (y == 2)))
 print "YES^";

or alternatively to recast it thus:

 if ((x ~= 1) || (y ~= 2))
 print "YES^";

(Note: ~~(A && B) is the same as (~~A) || (~~B), and ~~(A || B) is the same as
(~~A) && (~~B).)

5.4 Avoiding run-time errors

One vitally useful technique for avoiding run-time errors relies on the logical
operators working left-to-right. Suppose you wrote this as part of an object
definition:

 if (child(self) has general)
 print "DUBIOUS^";

to test if an object's eldest child object has its general attribute set. Unfortunately,
you'll get a run-time error if the object happens to have no children. Here's how to
save the day:

 if (child(self) && child(self) has general)
 print "CORRECT^";

First check if there is a child; then and only then test its attribute. Here's a
similar example for object properties. This may cause an error if object x doesn't
define a myprop property:

Sonja Kesserich

65www.OnyxRing.com

 if (x.myprop > 5)
 print "DUBIOUS^";

whereas this is safer:

 if (x provides myprop && x.myprop > 5)
 print "CORRECT^";

5.5 Testing many different things

You can use conditions to check if an attribute has been set or not, what are the
objects involved in an action, what action is being carried on, the current state of
an object property, the value held in a variable... All these may be combined with
logical operators as need arises. For instance:

 if (action == ##AttackWith && noun == troll && second == axe) {
 remove axe;
 "The troll watches politely as the axe hits his head and breaks in a thousand
 pieces. ~Zorry!~, he says, ~It zeemz that I didn't explain mezelf properly. It'z zwordz
 that do the trick.";
 }
 if (location == Fast_food_palace && (noun == burger || noun == fries)
 && clerk has friendly)
 "The clerk checks that nobody's looking and gives you a quick wink.
 ~I wouldn't recommend that unhealthy stuff, sir. Why don't you try our pizza
 instead?~";
 if (noun provides size && noun.size >= 3 &&
 rolling_suitcase notin player &&
 player has exhausted) print_ret "You try to lift ", (the) noun, " but
 your arms seem to have other ideas.";

6. Conclusion.

As we have seen, bitwise and logical operators behave quite differently from each
other even if their syntax is roughly similar. In game design, where it's necessary
to constantly test the current state of objects and situations, logical operators
become helpful tools to combine conditions, while bitwise operators may be safely
ignored most of the time -- it never hurts, however, to know what they are and
do, in case you come across a circumstance where they might prove needful.

[Thanks a lot to Roger Firth, whose unmerciful editorial pencil was decisive to bring

Bitwise and Logical Operators in Inform

66 Intermediate Coding

this article to its present form.]

An Inform Developer's Guide

67www.OnyxRing.com

Part E
Advanced Topics

An Inform Developer's Guide

68 Advanced Topics

Jim Fisher

69www.OnyxRing.com

Inform Extensions Voodoo

Introduction

n case you didn't get it from the title, this article describes
techniques that are useful to Inform extension developers. These
techniques offer solutions to especially sticky issues that extension
authors face. They provide reusable code that not only makes life

easier for the extension developer, but also eases the burden of implementing the
extension for the game developer.

Note the distinction that is made here between "extension developer" and "game
developer." Yes, I know that there probably isn't an extension developer that hasn't
written, or at least started writing, a game. Keep in mind, though, that there is a
whole set of issues that are faced uniquely by authors of reusable extensions. This
article focuses on such issues, so readers should now take a moment to put on
their "extension developer" hats to gain the full value of this article.

Be forewarned that the examples that follow are not for the light of heart. They
implement code and techniques that the reader may find less than intuitive (well,
maybe the first two aren't so bad). The rewards, however, far out weigh the
learning curve associated with them. We'll start then, with the easiest and count
down to the most difficult...

Trick #5: Replacing Replaced functions

The Replace keyword allows you to substitute your code for code that is defined in
the standard library. This is a common way of extending the library, and for the
game developer there is little need to think beyond this. The life of the extension
developer is not as free as all that, however. Just as extensions tend to replace
"portions" of the standard library in order to add new functionality, so will game
designers often want to replace "portions" of extensions to special tailor what they
do.

The problem? Because of the way system_file and replace have been
implemented, this can only be done once. That is, when designated to be replaced,
all instances of a function that follow the system_file directive (in a single file)
are discarded, and only instances of the function that do not follow the system_file
directive are included. That is, when an extension replaces a library routine (all of

Inform Extensions Voodoo

70 Advanced Topics

which are defined in the context of system_file), it must define another version of
that routine not under the system_file context. By definition, this new version
cannot be replaced.

For a real world example, my ORNPCVerb.h module redefines several verbs and
enables them to be performed by NPCs. Other than that modification, there are no
changes to the verbs or the way they work. What if a game developer wanted to
add new functionality to the TakeSub routine? Since he can no longer REPLACE
this routine, is he forced to modify my library extension directly? Obviously this is
a bad idea, but thankfully there is another solution, which is very easily done.
Simply wrap the extension's new definition in conditional compilation directives:

 Replace TakeSub;

 #ifndef TakeSub;
 [TakeSub;
 !--Extension's new TakeSub code here
];
 #endif;

This forces Inform to compile the extension's replaced version of TakeSub only if
the game author hasn't already specified a version of his own.

Trick #4: Automatic Initialization

Sometimes the simplest modifications are the most powerful. This one is a biggie
for extension developers. Although it is also useful to the game developer (indeed,
I use it extensively when writing games), it is the extension author that gains an
endless number of possible advantages:

 Property additive object_initialise;
 Replace Main;

 [Main o;
 objectloop(o provides object_initialise && o.object_initialise~=0)
 o.object_initialise();
 InformLibrary.play();
];

Okay, I know what you're thinking: "That's it? That's the great key to writing
library extensions? That's the Mustafa of useful features? You've got to be
kidding!"

Jim Fisher

71www.OnyxRing.com

Trust me on this one. This small snippet, transparent if not used, is perhaps the
single most useful modification that has ever been devised for the extension author.
It enables a slew of functionality upon which additional extensions can be based,
and allows for the initialization code of your extension to exist where it belongs:
actually in your extension.

Keep an eye out, because this technique will pop up again in sections that follow.

Trick #3:Unified Entry points

A challenging area that extension developers face deals with the use of Library
Entry Points (e.g.: UnknownVerb, ChooseObjects, ParseNoun). The problem is that
each of these routines may only be defined once. Thus, if you write an extension
that enables the use of a "wild-card for matching any collection of objects" (DM4
ex. 78) and another extension which "implements adjectives" (DM4 ex. 75), the two
will conflict since both of these techniques define the ParseNoun entry point.

So how can you define two coexisting versions of the same routines? The short
answer is that you can't. That is why game developers have always been forced to
cut and paste the algorithms from two versions of an Entry Point routine into one
and try to make sure that the two segments of combined code don't conflict.

It would be nice if there was such a thing as additive routines, just as there are
additive properties. There isn't, but it is possible to simulate this idea by creating
a list of routines and calling them until a specific value is returned (or not returned
as is the case below). The following object is an implementation of this idea:

 object AdditiveUnknownVerb
 with routines 0
 , num_routines 0
 , add_routine[rout;
 (self.&routines-->(self.num_routines))=rout;
 self.num_routines++;
]
 , run_until_not[untilnotval one two three four five six t retval;
 retval=untilnotval;
 for(t=0:t<self.num_routines:t++){
 if((self.&routines-->t)~=0)
 retval=((self.&routines-->t)(one, two,three,
 four, five, six));
 if(retval~=untilnotval) return retval;
 }
 return retval;
]
 ;

It is now fairly straight forward to define a generic entry point routine that does

Inform Extensions Voodoo

72 Advanced Topics

nothing but call our object for results (We'll use the UnknownVerb entry point):

 [UnknownVerb;
 return AdditiveUnknownVerb.run_until_not(false);
];

Consider the above a mini-framework for extending UnknownVerb. Alone it
accomplishes nothing in terms of UnknownVerb behavior, yet we now have gained
the ability to allow multiple definitions of UnknownVerb to coexist and have them all
execute in turn.

To exemplify this, we'll use two pre-existing versions of UnknownVerb (changing
only the names). The first is based upon the Teleport.inf example, written by
Michael Huang, which allows the player to teleport from one room to another by
simply stating the name of the room:

 [UVTeleport word place; !--UnknownVerb code
 objectloop (place has teleport){
 if(WordInProperty(word,place,name)){
 verb_wordnum=0;
 return 'teleport.room';
 }
 }
 rfalse;
];

Consider this definition to be part of extension one. The second definition of
UnknownVerb is based upon code from the ORLibrary module ORMagic.h which
allows magic spells to be cast by name, rather than forcing the player to use the
"cast" verb. Consider this code to exist in extension two:

 [UVCast word obj; !--UnknownVerb code
 objectloop(obj ofclass(ORMagic)){
 if(WordInProperty(word,place,name)&& obj.IsKnownBy(actor)){
 verb_wordnum=0;
 return 'cast';
 }
 }
 rfalse;
];

All that is needed to allow these two routines to coexist is to simply register them
with our list. Although this traditionally would have been done by instructing the
game developer to add certain lines to his initialise routine, the object_initialise

Jim Fisher

73www.OnyxRing.com

functionality which we discussed previously really shines here and eliminates the
game author's requirements to do anything other than include your extensions:

 !-- define in extension one
 object with object_initialise[;
 AdditiveUnknownVerb.add_routine(UVTeleport);];

 !-- define in extension two
 object with object_initialise[;
 AdditiveUnknownVerb.add_routine(UVCast);];

And there you have it -- two implementations of UnknownVerb from two separate
extensions working together instead of conflicting. (Why can't we all do that and
just get along?)

Trick #2: Redefining existing objects

As we've already discussed, when modifying the standard library's behavior,
extensions traditionally leverage Inform's REPLACE directive. This works well
enough with stand alone routines, but there is a great deal of code in the standard
library that is NOT contained in stand alone routines and so cannot be replaced
with the "replace" directive. Instead, this code is contained in objects. The
InformLibrary object is particularly noteworthy for this, and historically it has not
been an easy task to write a library extension which modifies the code contained in
the InformLibrary object. Instead, many authors resort to writing down instructions
for their modifications to a standard library file, like "First change the lines
starting at 638 of the parserm.h file which reads as ... to instead appear as ..." Not
the easiest solution, but there is another way.

It is fairly easy to substitute an object's property definition with another definition at
runtime:

 [NewPlay; !--a modified version of InformLibrary.play()
 ...code goes here
];
 [Initialise;
 InformLibrary.play=NewPlay; !--replace with new version
];

Of course an extension could leverage the object_initialise technique that we
discussed above to eliminate the game designer from having to code anything in
Initialise.

Inform Extensions Voodoo

74 Advanced Topics

A more complete and somewhat more elegant form of this involves creation of an
object that scans its own collection of properties and compares them to the
properties of a destination object, replacing the ones with the same name. The
following class does this:

 class RedefineObject
 with dest_object 0
 , object_initialise[i count;
 count = #identifiers_table-->0;
 for(i=4:i<=count:i++){
 if(self provides i && self.dest_object provides i){
 (self.dest_object).i=self.i;
 }
 }
]
 ;

Using this class, an extension can redefine multiple properties of any object very
easily. The following example will redefine both the begin_action and the
end_turn_sequence routines of the standard library's InformLibrary object:

 RedefineObject
 with dest_object InformLibrary !--destination object
 , end_turn_sequence[;
 !--new end turn code
]
 , begin_action[;
 !--new begin action code
]
 ;

It should be noted that unlike the REPLACE directive, the original version of the
routines still exist since they are redefined at runtime. This is both a blessing and a
curse, since it is possible to call the prior version of a routine under specific
circumstances, but only at the cost of an increased code size.

And now... drum roll please...

Trick #1: Defining/Redefining Library Messages

What has seemed like a near impossibility faced by extension developers lies in
the addition or modification of library messages. The standard library leverages
the "before" property of the user-defined LibraryMessages object to enable the
game developer to override the messages defined in the language definition file
(usually English.h), but an extension does not have this luxury since the

Jim Fisher

75www.OnyxRing.com

LibraryMessages object can only be defined once. Not only does this keep a
module from redefining the standard library's messages, it forces the extension
developer to "hard code" messages into their objects. If the game developer wants
to adjust the default responses he must modify the extension directly. What we
really want is an additional level of messages. That is, a place where extensions
can redefine or create library messages, which can then be redefined by the game
developer if desired.

This can be accomplished by combining some of the techniques described above.
First, let us make sure that a LibraryMessages object has been defined by the
player and define one ourselves if they have not:

 !--create only if not defined by game author
 #ifndef LibraryMessages;
 object LibraryMessages with before[;rfalse;];
 #endif;

Next we can create our "message proxy" which will provide storage for all of the
new messages that are defined at the extension level. Using Trick #2, this object
will also reprogram the LibraryMessages object to consider the registered
extension messages (deferring to the messages defined by the game author first):

 !--Object that maintains a list of Message routines (Tip #3)
 object ExtLibMsgs
 with routines 0
 , num_routines 0
 , add_routine[rout;
 (self.&routines-->(self.num_routines))=rout;
 self.num_routines++;
]
 , run_until [untilval one two three four five six t retval;
 retval=untilnotval;
 for(t=0:t<self.num_routines:t++){
 if((self.&routines-->t)~=0)
 retval=((self.&routines-->t)(one, two,three,
 four, five, six));
 if(retval==untilval) return retval;
 }
 return retval;
]
 , routine_holder 0 !--to save the game author's Messages
 , object_initialise[; !--Auto setup Tip #4
 self.routine_holder=LibraryMessages.&before-->0;
 !--redefining the LibraryMessages object to call
 !--our routine instead (Tip #2)
 LibraryMessages.&before-->0=(self.DoMsg);
]
 , DoMsg[;
 if(ExtLibMsgs.routine_holder()~=true)
 return ExtLibMsgs.run_until(true);
 rtrue;
];

Inform Extensions Voodoo

76 Advanced Topics

And now, a simple class will provide an interface for extension developers to
leverage:

 !-- The class definition used to redefine a message
 class ExtMsg
 with object_initialise[;
 ExtLibMsgs.add_routine(self.body);
]
 , body 0;

With the above code in place, the extensions developer can now redefine library
messages from multiple files in multiple places without conflicting with the game
author's LibraryMessages Definition. For example:

 ExtMsg with body[;
 Jump: if(location has hollow) "Loud echoes announce that
 you are jumping.";
 Wave: "You practice your break-dancing and do the wave.";
];

Note that this redefined message can be defined anywhere, unlike the
InformLibrary object which must be defined specifically between Parser.h and
VerbLib.h.

Conclusion

Okay. As I often say in my articles, the examples given above are just that -
examples. They are intended to communicate the concepts, but several of the tips
have been implemented better in the ORLibrary. If you are considering leveraging
some of these ideas in your own extensions, it might behoove you to review some
of the related ORLibrary modules. The code there is more fleshed out, have been
written to support GLULX, and can serve as an example of real-world
implementation.

Additionally, there are a couple of other "Tips" that I did not put in this article
but which nevertheless target the same extension-developer audience. These can
be found in the following articles:

Building a Personal library

And

Jim Fisher

77www.OnyxRing.com

Using "system_file" and "replace" In the Same Source File

Advanced NPCs: Introduction

78 Advanced Topics

Advanced NPC Creation: Introduction

he creation of a believable non-player character (NPC) is, at times, a
daunting task. In part, this is because there is such breadth in the
spectrum of detail that can be given to an NPC, but even this is just
an element of the bigger truth: NPCs represent people, and people

know people.

Unlike a book or a mirror, a person is alive. Living things by their very nature are
not static. Even basic creatures, like a cat (no offense cat lovers!) walk around.
They move with purpose, or perhaps they just wander aimlessly.

Living things also interact with the world around them. More than just seeking the
warmth of a sunspot, cats knock things off counters and mercilessly attack helpless
pairs of house shoes. They interact with other living creatures in different ways,
such as rubbing against their legs or hoping into their laps. They also respond to
interaction, like purring when pet.

People are even more complex, since they speak. Not only do they respond to
questions, but they also initiate conversion. Language itself further adds to the
complexity, since people learn. They can be told something, or read about it, and
then relay that information to another person in conversation.

To some degree a player will expect these things from an NPC, too. Players of
interactive fiction, new or experienced, experiment with the world in which they are
playing. The player knows what happens in real life and tries actions to see if they
work in the game.

Players will invariably test to see what the NPCs are capable of. They understand
intuitively that people are subjective and that they may choose to either do
something or refuse to do something simply because they are in a good or bad
mood. When dealing with people who refuse them, players will often attempt
persuasion by complimenting, or trying to establishing a camaraderie with a
character. They may even attempt bribery.

What the NPC is capable of will add to its believability. The NPC's believability
will add to the player's enjoyment and therefore overall assessment of the game.

So what's the big deal?

Jim Fisher

79www.OnyxRing.com

A believable NPC is just not an easy thing to accomplish.

This multi-part article series will describe some of the hurdles that are
encountered when developing NPCs, describe design principals that can be used
to address these hurdles, and give INFORM specific examples of implementing the
principals. The examples vary in complexity and are implemented with
intermediate to advanced coding techniques. These techniques include:

· creating new base classes to inherit from
· creating new print rules
· extending the standard library
· replacing the language definition file

The results are more than worth the effort, however, and include dynamic text
that reads more naturally, library messages that relate to NPC actions, and a
more believable, more powerful NPC implementation.

For more complete examples of these principals in action, see the ORNPC and
ORKnowledgeTopic entries in the ORLibrary section of this site.

(Note: at the time if this writing, the ORKnowledge and ORNPC entries are in
ALPHA state. That is, they are still actively being developed and bugs are being
ironed out, however they are developed enough to sufficiently serve as example
code that will compile and run.)

Advanced NPCs, Part 1: Pronouns on Steroids

80 Advanced Topics

Advanced NPCs, part 1: Pronouns on Steroids

Common Print Rules

ometimes writing reusable code is a hassle. This is especially true
in the case of pronouns. When creating a simple NPC, one may be
tempted to hard code gender phrasing into text. Sentences like

The waiter gives you his pen.

or
The doctor drops her stethoscope.

may very likely find their way into such an object. Although this seems fine at first
glance, and indeed IS fine for instances of an object, text written in this way ties
the object to its gender. Dropping "HER stethoscope" is fine for a female doctor,
but a male doctor should drop "HIS stethoscope." This can restrict an object's
reusability and therefore makes it unsuitable for implementation in a class.
The Inform Developer's Manual (fourth edition) gives a limited example of how to
deal with this in chapter IV §26 exercise 62 by defining print rules to deal with a
couple of different forms of pronouns (nominative and accusative.)

So everyone will be on the same page, lets review one of the examples given in
§a6 page 477:

 [PronounNom i; !this code snatched from the DM4
 if (i hasnt animate || i has neuter) print "it";
 else {
 if (i has female) print "she";
 else print "he";
 }
];

This routine, and the others like it, simply checks for the existence of the
appropriate gender attributes and prints out the correct pronoun (i.e.: "him," "her,"
or "it.") The example in the manual is, I think, intended to point us in the right
direction without really addressing all possibilities. That's for us to do.

Why Are There So Many Pronouns?

Some readers may not immediately recognize the references to "Nominative" or
"Accusative" forms of a noun or pronoun. Many people, way back in grammar
school, learned instead to call these "subject of a sentence" and "object of a

Jim Fisher

81www.OnyxRing.com

sentence." Once upon a time, in languages other than English, all nouns had
different forms based upon their placement in the sentence. Ancient Greek, for
instance, has four (actually five, but only four of significance). These are:

· Nominative (subject of the sentence)
· Accusative (object of the sentence)
· Genitive (noun possessing or qualifying another noun)
· dative (receiver of the object)

These correlate exactly with how nouns are used in a sentence. For example:
"The king : nominative (subject of sentence)

put the wife : accusative (object of sentence, what was put)

of the banker : genitive (qualifier of the wife)

in the dungeon." : dative (receiver of the object)

And again:
"The boy : nominative (subject of sentence)

kicked the girl"s : genitive (owner of the ball)

ball : accusative (object of sentence, what was kicked)

into the creek." : dative (receiver of the object)

In English, differences between these forms have primarily disappeared. An
apostrophe "s" has been adapted to show possession, and most nouns are now
written the same regardless of their placement in the sentence. With pronouns,
however, they remain in varying degrees. The dative form has all but been
eliminated and shows up only when nouns affect themselves, but a second genitive
form also occurs when the qualified noun has been previously described and is so
obvious as to be left out.
See how the masculine pronoun takes a different form depending upon its
placement:

HE gave HIM HIS dog, which was HIS, anyway.

The last occurrence of the masculine pronoun ("his") is the second form of

Advanced NPCs, Part 1: Pronouns on Steroids

82 Advanced Topics

possession. In this example the two forms are the same. This is not the case for
the feminine pronoun:

SHE gave HER HER dog, which was HERS, anyway.

The second form of possessive pronouns occurs when the object possessed is
obvious and therefore not listed. For example:

She took her chocolate, but gave you YOURS.

does not specify chocolate in the same dependant clause as the pronoun
"YOURS". If it did, then the form of the pronoun would revert to the first
possessive form and the sentence would read:

She took her chocolate, but gave you YOUR chocolate.

A Plethora of Pronouns

The following table shows the pronoun for each person, plurality, and gender:

Person/Plurality/Gender Nom. Accus. Gen. 1 Gen. 2 Dat.
1P/Sing I me my mine myself
1P/Plur we us our ours ourselves
2P/Sing* you you your yours yourself
2P/Plur* you you your yours yourselves
3P/Sing/Masc he him his his himself
3P/Sing/Fem she her her hers herself
3P/Sing/Neut it it its its itself
3P/Plur they them their theirs their selves

* As a side note, notice that in modern English, second person pronouns almost
always are treated as plural even if they represent a singular noun. This was not
always the case. For a game placed during the reign of King James, it may
behoove the developer to implement the missing second-person, singular pronouns
that were commonplace in old-English: Thou, Thee, Thy, Thine, and Thyself,
respectively.

Looking at this table, you may be wondering what some of these forms have to do
with writing an NPC class. Specifically you may wonder about first, and second
person pronouns as well as the plural pronouns. The answer to this is that you

Jim Fisher

83www.OnyxRing.com

simply don't know how your class may be used in the future. For example, the
standard library supports the ability to allow the player to become an NPC (the
ChangePlayer() library routine). It may be that phrases like "The troll swings the
axe" need to become "You swing the ax."
Additionally, some library extensions (such as the OREnglish.h file) also allow the
game to change the "person" the narrative is being told in. The story could be told
in first person and the above example would then need to read, "I swing the axe."

Plurality too is not beyond reason since an NPC can be constructed to represent a
swarm of bees ("They fly after the horse as it runs from them") just as it could
represent Superman ("He flies after the horse as it runs from him.") A game where
the player shares a body with an NPC might require first person plurality. Text
would suddenly need to take the form "We swing the ax" and "We fly after the
horse as it runs from us."

When developing reusable code, it's always best to cover all bases.

Enough with design, now the implementation.

A Stronger, More Powerful Pronoun Rule

Using the above chart, we"ll rewrite the PronounNom routine and name it "I" after
the first person singular pronoun (remembering the pronoun is a lot easier than
remembering the name of the case of the pronoun, and first person singular is the
only form that offers five distinct words for each case):

 Default NarativePerson 2; !if not changing the
 !narrative, then default
 !to second person
 [I obj;!Nominative form (she/he/it/they/I/we/you)
 if(obj==player){ !talking about the player?
 if(NarativePerson==1) { !first person?
 if(obj has pluralname) print "we";
 else print "I";
 }
 else print "you"; !2nd person, ignore plural
 }
 else { !not the player, so 3rd person
 if(obj has pluralname) print "they";
 else { ! is singular
 if (obj has neuter || obj hasnt animate)
 print "it";
 else {
 if (obj has female) print "she";
 else print "he";
 }
 }
 }
];

Advanced NPCs, Part 1: Pronouns on Steroids

84 Advanced Topics

In addition to the above print rule named "I", a rule for each of the five cases
should be implemented, plus additional capitalized versions. By duplicating the
above example and modifying it just a little, we will end up with ten basic pronoun
print routines. Specifically, the five lowercase routines: "I", "Me", "My", "Mine",
"Myself", plus the five uppercase version: "CI", "CMe", "CMy", "CMine", and
"CMyself".
Using these print rules, it is now possible to write lines of text that literally
transform themselves based upon their use. Look at the following example for a
moment:

 print (CI)man, " gave ", (My)man," food to ",
 (Me)woman,". ", (CI)woman," accepted ",
 (My)man, " food and then thanked ",(Me)man;

With two NPCs, one male, one female, this line above would output the following
text:

He gave his food to her. She accepted his food and then thanked him.

If the player inhabits the object "man" then the text would appear as:
You gave your food to her. She accepted your food and then thanked you.

Or if the NarativePerson variable is equal to 1 (first person):
I gave my food to her. She accepted my food and then thanked me.

Or the player could be the woman and the man object could represent a group of
monks:

They gave their food to me. I accepted their food and then thanked them.

The variations are numerous.
Even More Flexibility...

The whole purpose in having pronouns is to keep from having to repeatedly refer
to the noun by name. For example, a sentence such as:

The troll reached into the troll's bag and pulled out the troll's axe. The troll
swung the troll's axe and chopped down the troll's tree.

reads better as:
The troll reached into his bag and pulled out his axe. He swung it and chopped down
his tree.

Once the noun has been mentioned, it is fine to begin referring to it in pronoun

Jim Fisher

85www.OnyxRing.com

form. It is even desirable to do so. Using the pronoun without first naming the
noun, however, is confusing. For independent blocks of text, that are displayed
solely as we write them, this is never a problem since we can be assured that we
reference the troll first by name, then as a pronoun. NPCs, however, have a
tendency to do multiple things at different times, and it is not always known what
text has already been printed.
Consider an NPC that moves around, possibly responding to a call, and speaks 50
percent of the time. Creating text that describes the NPC entering the room and
another line of text that describes him talking makes it difficult to efficiently
use pronouns because one of the events may happen without the other, or they
may both happen together. Assuming both occur, we would like to print the
following:

The troll enters the room. "You called? " he asks.

If we know that these two sentences will always print together, we can code them
by referring to the troll with the standard "The" print rule in the first line of text,
and our specialized "I" print rule in the second line of text. This doesn't really
work well when the NPC talks without first moving, however, since we would get a
pronoun without any prior mention of the troll:

"You called?" he asks.

This leaves it up to the player to figure out who the pronoun "he" refers to. To
complicate things further, if the troll is mentioned prior to his entering the room,
we get duplicated references to the noun. Although this is okay:

You blow the whistle to summon the troll. The troll enters the room.

The pronoun is preferable:
You blow the whistle to summon the troll. He enters the room.

In addition, when two objects are of the same gender, pronoun use can become
confusing:

The barber grimaced at the sheriff. He handed him a badge.

Who gave whom a badge? The sentence seems to indicate that the barber gave
the sheriff the badge, but was that really what we intended? In cases such as
these, it is generally preferable to limit pronoun use to only the first named object
of any given gender:

The barber grimaced at the sheriff. The sheriff handed him a badge.

Preceding text should also change the pronoun context:
The sheriff entered. The barber grimaced at him. He gave the barber a badge.

Addressing both of these points requires another set of print rules that keeps

Advanced NPCs, Part 1: Pronouns on Steroids

86 Advanced Topics

track of the current pronoun-described objects and outputs the name of the object
if the use of a pronoun would be unclear:

 Global MPronounObj;
 Global FPronounObj;
 Global NPronounObj;
 [TheI obj checkobj;
 if(obj hasnt animate || obj has neuter)
 checkobj=NPronounObj;
 else {
 if(obj has female)
 checkobj=FPronounObj;
 else
 checkobj=MPronounObj;
 }
 if(obj==checkobj) print_ret (I)obj;
 print (the)obj;
 if(checkobj==NULL && obj~=player){
 if(obj hasnt animate || obj has neuter)
 NPronounObj=obj;
 else {
 if(obj has female) FPronounObj=obj;
 else MPronounObj=obj;
 }
 }
];

Of course nine more rules need to be implemented to cover the rest of the print
rules developed previously. Additionally, a routine should be created that resets
pronoun usage by setting the three pronoun variables to NULL:

 [ClearPronoun;
 MPronounObj=FPronounObj=NPronounObj=NULL;];

Now the above example can be demonstrated by the following randomized code
(assuming the sheriff and barber objects have been defined appropriately):

 ClearPronoun();
 if(random(2)==1) print (CTheI) sheriff," entered. ";
 if(random(2)==1) print (CTheI) barber," grimaced
 at ",(theMe)sheriff,". ";
 print (CTheI)sheriff," gave ",(theMe)barber,"
 a badge.";

Verb and (pro)Noun agreement...
The reader may have noticed that many of the examples above have been given in
past tense. This is not only to demonstrate diversity, but also for the sake of
clarity, since it avoids a quirk in the English language that should be discussed
now. Specifically it is the agreement of verbs with their Nominative noun's

Jim Fisher

87www.OnyxRing.com

plurality when described in third person, present tense.

Yeah, I know, it sounds confusing, but English speakers understand this on an
intuitive level so a couple of examples should clear this right up. First lets look at
a present tense verb used with a first person noun:

I run.

We run.

Okay, that was both singular and plural forms. No change in the verb. We can see
the same thing in second person:

You run.

Even third person plural follows this rule:
They run.

The third person, singular noun disrupts our continuity, however, because it
makes the verb change form:

He runs.

She runs.

It runs.

For most verbs, this change takes the form of an "s" being appended to the verb.
Not all, however:

We do.

He does.

and,
They fly.

It flies.

And again,
I wax.

It waxes.

Print rules won't help us here. What we need is a routine that checks the noun and
chooses the appropriate verb form, or possibly appends an "s" to the verb for us if
appropriate. Luckily, verbs only follow nominative nouns so a single lowercase and
a single uppercase routine can be put into place to affect this change. Here's the
uppercase version:

 [CIVerb obj verb altverb;
 print (CTheI) obj," ";
 if(obj has pluralname || obj~=player)
 print verb;
 if(altverb==null)

Advanced NPCs, Part 1: Pronouns on Steroids

88 Advanced Topics

 print verb,"s";
 else print altverb;
];

Routines always return a value of some kind. Roger Firth's article, "Print Rules"
suggests creating a do-nothing print rule to discard the return value rather than
print it:

 [ignore o;];

Having done this, the IVerb routines can be implemented in the print statement like
this:

 print (ignore)CIVerb(obj,"drink"),"
 the glass of milk.";

And like this:

 print (ignore)CIVerb(obj,"smash",
 "smashes")," the empty glass.";

Depending upon the attributes of obj and what text has already been printed, any of
the following could be printed:

The troll drinks the glass of milk. He smashes the empty glass.

You drink the glass of milk. You smash the empty glass.

The monks drink the glass of milk. They smash the empty glass.

As If That Wasn't Enough...

Additionally, there are a few special cases regarding the so-called "verbs of being"
that change based upon plurality and person. The standard library attempts to
address these with the IsOrAre print rule. If implementing a game in first person,
this routine would have to be replaced to also support "am". Better still, a
variable could be implemented that checks the tense a game is being told in and
adequately supports "was", "were", and "will".

Jim Fisher

89www.OnyxRing.com

A Little Note on the Code

The samples described above are just that, samples. Although the text often refers
to duplicating code and changing portions of it to match, this really isn't the best
way. A skeleton function containing the duplicated algorithm which accepts all
variations of text as parameters would take up significantly less space, and be
easier to maintain. You can see for yourself because...

The ORLibrary entry ORPronoun.h contains a complete implementation of the
techniques discussed in this article.

Advanced NPCs, Part 2a: Conversation and Learning

90 Advanced Topics

Knowledge and Conversation
§1 The Basics
(Advanced NPC Implementation, Part 2a)

s developers, we can put forth a great deal of effort while trying to
make an NPC appear believable. We can make the character walk
around randomly. We can make him steal items that are lying around.
We can even program the character to scribble graffiti on walls at

significant locations. It's true, a character can be designed to do just about
anything imaginable, but there is one aspect of NPC design that will, above all
others, make or break the believability of an NPC: conversation.

A successful implementation of a PC-NPC conversation is no small task. Many
developers have tried and failed to create believable dialog. Obviously, success at
this bares great dependency upon the author's writing skill. Conversely, a
well-written manuscript can be implemented poorly. The truth is, a text adventure
without code is just text. Code and prose are equally important in interactive
fiction and the two must complement each other to truly be effective.

The purpose of this three-part article series is to identify the major coding
techniques used in the development of talking NPCs and give examples of
implementing some of these. Additionally we will cover advanced techniques such
as uniting knowledge and information, separating information from conversation,
morphing conversation topics, conversation scripts, and implementing knowledge
that is learnable. First, a disclaimer:

In interactive fiction, complex puzzles often have multiple solutions. The
similarities between life and art are ever obvious in this regard, since complex
coding objectives often can be accomplished by multiple techniques. As a general
rule of thumb, the more complex the objective, the more diversified are the
possible solutions. Since this is an article about "advanced" techniques in NPC
conversations, the variations and alternate implementations abound. It should be
noted that the techniques covered in this article work for me, but my way is not the
only way. If you, as the reader, see another technique then feel free to implement
it.

Now that that stuff is out of the way, let us begin slowly by touching upon the
three major techniques used to implement interactive character conversations:
Menus, keywords, and topics.

Jim Fisher

91www.OnyxRing.com

The Menu System

A commonly used method of implementing conversation is the menu-based
system. There are several advantages to using this technique:

· There is never any doubt for the player that there is a conversation to be had (i.e.:
that there are things to say or ask) since the conversation options are listed up
front.

· The player never has a problem with phrasing (finding the right words to ask).
· The developer has control of the flow of conversation. Specifically, the author

determines what can be asked and when that menu option appears.

There are also some disadvantages to this technique:

· The player's experience is a less personal one. Choosing conversation options is
more akin to the "Choose Your Own Adventure" style of stories. It can also be
frustrating to a player that wants to ask a question which isn't listed. Given the
same conversation coded two ways, many players come away feeling that their
options seemed more limited with this technique. A player that has the ability to
formulate his own question experiences a feeling of freedom, even if the question
has not been coded for and the response is just the simple: "I know nothing about
that."

· The menu technique also requires less player involvement. In conventional
methods, important conversation topics can be derived from seemingly insignificant
details mentioned previously. For example, asking about a book of restaurant
matches, found in a character's coat, might reveal him as a previously unknown
witness to a restaurant murder. In a mystery game, the matches might be a clue
that the player would need to attend to and recognize the significance of. Seeing
the menu item "Ask about matchbook" fairly spoils the need for the player to pay
attention to this sort of detail.

· A significant drawback to menu-based conversations is the inherent limitation of
realism. A believable NPC is often coded with dozens of insignificant responses
that have no importance in the game except to add realism to the character.
Implementing this sort of detail in a menu-based system is difficult at best. If not
carefully limited in scope, the player could be left facing a substantially sized
menu of meaningless small talk.

Advanced NPCs, Part 2a: Conversation and Learning

92 Advanced Topics

This is not to say that the menu system is not worth considering. In fact, it has
been implemented with great success in a few choice works. It is, however a
replacement for what the standard library offers, the Ask/Tell/Answer paradigm,
and will not be discussed further in this article.

Nearly every other conversation technique is based upon the Ask/Tell/Answer
model. At its most basic implementation is the use of keywords...

Using Ask/Tell/Answer (With Keywords)

As stated above, the standard library implements a basic conversation framework
by defining three communication verbs. These three verb are 'ask,' 'tell,' and
'answer' (or say) and they are handled traditionally in the NPC's life property. For
the 'tell' and 'ask' forms, the first significant keyword is stored in the library
variable 'second.' For the 'answer' form, it is stored in the variable 'noun.' Take
the following as an example:

 object -> magicmirror "magic mirror"
 has animate
 with name 'magic' 'mirror'
 , life [;
 tell: if(second=='hello')"~Yes, I know what 'hello' is.
 I may not get out much, but I recognize a greeting!~";
 answer: if(noun=='hello') "~Well, 'hello' right back at you,
 mortal.~";
 ask: if(second=='hello') "~You want to know about 'hello?'
 Where have you been all your life, that you don't
 recognize a greeting?~";
];

See how the keyword 'hello' is handled differently depending upon the verb used to
reference it:

 >ask mirror about hello
 "You want to know about 'hello?' Where have you been all your life,
 that you don't recognize a greeting?"

 >tell mirror about hello
 "Yes, I know what 'hello' is. I may not get out much, but I recognize a
 greeting!"

 >say hello to mirror
 "Well, 'hello' right back at you, mortal."

Alone, this technique is fairly limited, but it is also one of the most widely
used methods for implementing conversation that you will find in Inform games.

Jim Fisher

93www.OnyxRing.com

As such, there are various methods of making it somewhat more powerful. The
consult_from and consult_words variables, for example, can be used to "look
ahead" and example more than a single word. To demonstrate a starting point for
diversifying the keyword technique, let's focus on the ASK form of communication
in the next example:

 object -> magicmirror "magic mirror"
 has animate
 with name 'magic' 'mirror'
 , life [word;
 ask:wn=consult_from; !position the pointer for the
 word=NextWord(); !NextWord call
 if(word=='hello') { !make sure we are talking about a type of hello
 while((word=NextWord())=='in' or 'from'); !ignored words
 switch(word) { !lets find what kind of hello we are looking for
 0: "~You want to know about 'hello?' Where have you been
 all your life, that you don't recognize a greeting?~";
 'canada', 'canadian': "~In Canada they say 'Hello, eh.'~";
 'hawaii', 'hawaiian': "~Hmmm, I believe that would be
 'Aloha.'~";
 }
 }
]
 ;

Now the keyword 'hello' can be put into a specific context:

 >ask mirror about hello in canada
 "In Canada they say 'Hello, eh.'"

 >ask mirror about hello in hawaiian
 "Hmmm, I believe that would be 'Aloha.'"

 >ask mirror about hello
 "You want to know about 'hello?' Where have you been all your life, that
 you don't recognize a greeting?"

Obviously the above example isn't as useful as it could be since it is too
dependent upon word order. For instance,

 >ask mirror about Hawaiian hello

will NOT be matched by the routine in its present form. Certainly it could be
modified to scan for words despite order, but the more we pattern match, the more
we are duplicating code that exists in the parser. For conversation topics that are
more than a single unique keyword, there is a better way.

Advanced NPCs, Part 2a: Conversation and Learning

94 Advanced Topics

Using Ask/Tell/Answer (With Conversation Objects)

Inform is an object based language. The rooms the player visits are objects, the
items that are gathered are objects, and the very NPCs that exist in the game are
objects. Not surprisingly, all of these things are accessible through the game. We
can look at the room we are in, pick up a hammer that lies on the floor, and talk
to the NPCs. Each of these objects exists in the game world. One of the more
allusive concepts for a new Inform developer to grasp is that objects do not have
to actually be present in the game at all. They can, instead, be abstractions. Use
of these non-existent objects is the third, and most powerful method of
implementing NPC conversation, since it opens the door for numerous other
techniques.

Let us set the stage for more advanced techniques by walking through a thorough
example of basic conversation objects. First, we can create a base class from
which all conversation objects will be derived:

 class KnowledgeTopic;

Not the most impressive line of code, but it is a step in the right direction. In
fact, what it accomplishes is significant. We can now, for instance, write a fully
qualified scope rule to determine if an NPC "owns" a specific conversation object
and extend the 'ask' verb to use that rule.

 Object CommonKnowledge;
 [TopicInTarget o; !isolate information known by the target
 switch(scope_stage){
 2:objectloop(o ofclass KnowledgeTopic &&
 parent(o)==inputobjs-->2 or CommonKnowledge)
 PlaceInScope(o); rtrue;
 3: "I did not understand who or what you were referring to.";
 }
];
 extend "ask" first * creature 'about' scope=TopicInTarget-> Ask;

The TopicInTarget() routine (scope rule) will pull into scope any KnowledgeTopic
derived object that is a child of the character being questioned. In this way we
can define what the character "knows". Additionally, notice the definition of the
CommonKnowledge object. Topics that are placed within this object are also pulled
into scope. All characters know topics that are classified as "common knowledge."

Jim Fisher

95www.OnyxRing.com

Here is an example of two topics. The first, "beauty," is a child of the
CommonKnowledge object and so is known by all characters. Only the mirror
knows the second, "snowwhite":

 KnowledgeTopic beauty CommonKnowledge with name 'beauty';
 KnowledgeTopic snowwhite magicmirror with name 'snowwhite' 'girl';

As you can see, using knowledge objects allows us to fill the 'name' property with
the keywords that can reference a topic, just as we would a table or a chair. With
this technique, the variable 'second' no longer holds the keyword, but points to the
object that was recognized. The life property must be changed to reflect this:

 object -> magicmirror "magic mirror"
 has animate
 with name 'magic' 'mirror'
 , life [; ask:switch(second) {
 beauty: "~Ah yes. That is only skin deep.~";
 snowwhite: "~Yes, I remember her. But that was long ago.~"; }]
 ;

For the sake of example, and to verify that our new scope rule is working how we
intended it, let's create another character coded almost exactly as the mirror:

 object -> guard "guard"
 has animate
 with name 'guard'
 , life [; ask:switch(second) {
 beauty: "~Ah yes. That is only skin deep.~";
 snowwhite: "~Yes, I remember her. But that was long ago.~"; }]
 ;

Now we have two characters to converse with. Note that, like the mirror, the guard
is also coded to respond to the 'snowwhite' question. It'll be up to our scope rule to
determine if he knows about the topic. Since he does not, this portion of his life rule
will never be called and the text, although defined, will never print:

 >ask guard about beauty
 "Ah yes. That is only skin deep."

 >ask mirror about beauty
 "Ah yes. That is only skin deep."

Advanced NPCs, Part 2a: Conversation and Learning

96 Advanced Topics

 >ask mirror about snowwhite
 "Yes, I remember her. But that was long ago."

 >ask guard about snowwhite
 There is no reply.

That was what we expected. The guard knows nothing of 'snowwhite.' Our new
scope rule is pulling in the appropriate knowledge for the appropriate character.

On to Advanced Techniques (Concluding the Basics)

The topics discussed in this section have set the stage for a discussion of more
advanced techniques. In §2 we will begin to delve into more advanced topics that
build upon what we have learned so far. For readers that wish to further
contemplate the material of this section, I highly recommend a review of Roger
Firth's Infact page. Specifically, the conversation section found at "
http://www.firthworks.com/roger/infact/convers1.html" is of immediate relevance.

And now, on to section 2...

Jim Fisher

97www.OnyxRing.com

Knowledge and Conversation
§2 Advanced Techniques
(Advanced NPC Implementation, Part 2b)

n the previous section we discussed various methods for developing
NPC conversation and reviewed techniques for implementing the most
widely used of these. In this section we will expand upon those
methods with much more powerful techniques and begin to develop

reusable classes for NPCs in the process.

Uniting Knowledge and Information

In the previous example, a character's knowledge of something and his ability to
talk about it are not as tightly related, as they ought to be. Coded into the
guard's life routine is the same information about Snow White that the mirror
has. The guard may not recognize her name, but he was coded, wastefully, to talk
about her anyway. The reverse of this is a more probable circumstance,
considering the existence of common knowledge. In the above example, a new
NPC would also need to be coded with responses to the 'beauty' topic. Uniting what
is said with what is known is the second major benefit to using conversation
objects.

To start off with, let's modify our KnowledgeTopic base class a little to default a
property, which we will arbitrarily call "TopicInformation:"

 class KnowledgeTopic
 with TopicInformation "~Yes, I know about that but I think I'll keep it
 to myself.~"
 ;

Now we can tie the text to the actual knowledge objects:

 KnowledgeTopic beauty CommonKnowledge with name 'beauty'
 , TopicInformation "~Ah yes. That is only skin deep.~"
 ;

 KnowledgeTopic snowwhite magicmirror with name 'snowwhite' 'girl'
 , TopicInformation "~Yes, I remember her. But that was long ago.~"
 ;

Advanced NPCs, Part 2b: Conversation and Learning

98 Advanced Topics

And remove the text from the life property (of both characters) entirely. Instead, we
can print out the TopicInformation value:

 object -> magicmirror "magic mirror"
 has animate
 with name 'magic' 'mirror'
 , life [;ask:
 if(second ofclass KnowledgeTopic) {
 PrintOrRun(second, TopicInformation);
 return true;
 }
];
 object -> guard"guard"
 has animate
 with name 'guard'
 , life [;ask:
 if(second ofclass KnowledgeTopic) {
 PrintOrRun(second, TopicInformation);
 return true;
 }
];

Note that the example runs exactly as it did previously (i.e.: The guard will
respond when asked about 'beauty', but not 'snowwhite.' The magic mirror will talk
about both.)

An NPC'a ability to converse about a topic is now tied directly to the scope of the
topic itself. If the character "knows" the information, he can talk about it. No
changes to his life property need to be made to add this knowledge. This technique
benefits us in several ways:

· The life property now has code that is consistent across all NPCs. This enables
us to implement a NPC base class to share the common code in the life routine.

· We now have the ability to add knowledge and to take away knowledge without
coding them in each and every NPC. We simply have to move the knowledge
object around.

· We are now one step closer to implementing a feature in our NPCs that is
somewhat uncommon: the ability to learn and teach. Of course, this will require a
few changes to fully accomplish. The next step in that direction is...

Shared Knowledge

So far we've developed our scope rule to allow a knowledge object to be known by
one character or all characters. This doesn't cover all cases, though. Rarely do
we have an all-or-nothing circumstance; often we have a group of people that know

Jim Fisher

99www.OnyxRing.com

a specific topic of conversation, and another group of people that do not. What is
needed is a way to keep track of who knows what.

The most intuitive way to accomplish this would be to add a property to each NPC
that records what he knows. This isn't really the best solution, however, since
knowledge does not have to be limited to NPCs. It could also be found in a book.
Instead we can attach a property list to the knowledge object that indicates who or
what "knows" it:

 ...from KnowledgeTopic class
 , KnownBy 0 0 0 0 0 0 0 0 0 0 !added to KnowledgeTopic

Having done that, it is now not such a complicated task to check this list for a
specific object. We'll call this routine IsKnownBy() and attach it as a property to
the KnowledgeTopic class as shown below:

 class KnowledgeTopic
 with TopicInformation "~Yes, I know about that but I think I'll keep
 it to myself.~"
 , KnownBy 0
 , IsKnownBy[obj t;
 for(t=0:t<(self.# KnownBy)/2:t++) (
 if(self.& KnownBy -->t==obj) return true;
 }
 return false;
]
 ;

And, of course, our scope rule can leverage this as well:

 [TopicInTarget o; !isolate information known by the target
 switch(scope_stage){
 2: objectloop(o ofclass KnowledgeTopic)
 if(parent(o)==CommonKnowledge ||
 o.IsKnownBy(inputobjs-->2))
 PlaceInScope(o);
 rtrue;
 3: "I did not understand who or what you were referring to.";
 }
];

Note that our scope rule no longer looks for the parent of the topic anymore. This
is actually a preferable arrangement since we can now avoid placing the knowledge
topics in the game world at all. This keeps us from having to deal with sticky

Advanced NPCs, Part 2b: Conversation and Learning

100 Advanced Topics

commands like:

 >drop beauty

or

 >examine beauty

To demonstrate our new capacity for selectively shared knowledge, we will need to
create a third NPC. This one, like the mirror will also know the 'snowwhite' topic,
making this knowledge shared by two characters, but still unknown by the third (the
guard.)

Since we are beginning to duplicate code, this is a good opportunity to implement
an NPC base class:

 Class NPC
 has animate
 with life[;ask:
 if(second ofclass KnowledgeTopic) {
 if(noun==actor) {
 L__M(##Tell, 1);
 rtrue;
 }
 PrintOrRun(second, TopicInformation);
 rtrue;
 }
]
 ;

The two existing NPC's, by inheriting from this class, are now reduced to:

 NPC -> magicmirror "magic mirror" with name 'magic' 'mirror';
 NPC -> guard "guard" with name 'guard';

And a third can be created just as easily:

 NPC -> dwarf "dwarf" with name 'dwarf';

The snowwhite topic can now be shared between the MagicMirror NPC and the

Jim Fisher

101www.OnyxRing.com

Dwarf NPC by filling in values in the KnownBy property (the beauty topic, being
a child of the CommonKnowledge object, does not need the KnownBy property):

 KnowledgeTopic snowwhite magicmirror
 with name 'snowwhite' 'girl'
 , TopicInformation "~Yes, I remember her. But that was long ago.~"
 , KnownBy magicmirror dwarf 0 0 0 0 0 0 0
 ;

Now we can verify that the same KnowledgeTopic is shared by two NPCs, but not
all NPCs:

 >ask mirror about snowwhite
 "Yes, I remember her. But that was long ago."

 >ask guard about snowwhite
 "There is no reply."

 >ask dwarf about snowwhite
 "Yes, I remember her. But that was long ago."

Now we're are ready to give our NPCs (and PCs, too) the ability to learn...

Learning and Teaching Knowledge

Learning and teaching are the same action described from two perspectives. Since
implementing the 'shared knowledge' functionality, the act of learning a new topic
translates exactly into manipulating the topic's KnownBy list. The following routine
can be added to the KnowledgeTopic class to do just this:

 ...from KnowledgeTopic class
 , MemorizeFor[obj t;
 if(self.IsKnownBy(obj)) return true; !already known
 for(t=0:t<(self.# KnownBy)/2:t++) {
 if(self.& KnownBy -->t==0){
 self.& KnownBy -->t=obj;
 return true;
 }
 }
 print "Run-Time Error! Object is known by too many sources and
 cannot be learned. Increase the size of the KnownBy property.";
 return false;
]

Now, letting the guard in on the 'snowwhite' secret can be accomplished with a
simple:

Advanced NPCs, Part 2b: Conversation and Learning

102 Advanced Topics

 snowwhite.MemorizeFor(guard);

Thus far, the 'ask' portion of the 'life' routine has called the TopicInformation
property to print out the topic. Often, as with the case of topics being taught and
learned, there is more to be done than simply printing text. Morphing topics is an
example of this that will be discussed in a moment, as well as adding character
personality by separating information from conversation. For now though, we can
just recognize that the teaching/learning of topics should be tied to the printing of
dialog and a driving function should be added to call both, without blurring the two
into the same routine. A new property, we'll call it 'TellAbout,' will be added to
the KnowledgeTopic class to do both:

 Attribute learnable;

 ... rest of KnowledgeTopic class code here
 , TellAbout[to from;
 PrintOrRun(self,TopicInformation);
 if(self has learnable) Self.MemorizeFor(to);
]

The TellAbout routine is where the logic behind the conversation occurs. The
'learnable' attribute has been introduced to govern whether or not to "teach" this
topic. Some topics are simply small talk and don't need to be shared between
characters. 'Learnable' allows the developer to designate which topics can be
"learned."

Astute readers may catch that the 'from' variable is never used and so will generate
a compiler warning. This is okay. The 'from' variable is actually a parameter that
will become useful to us later. We've just introduced it early.

We can now change the life routine of our NPC class to call the TellAbout property:

 ...from NPC class
 , life [;ask:
 if(second ofclass KnowledgeTopic) {
 second.TellAbout(actor,self);
 return true;
 }
]

Jim Fisher

103www.OnyxRing.com

That's all that's needed for the player character to learn from an NPC. Of course,
learning a topic is nothing if you cannot speak about that topic. In order to do
that, we need to extend the 'tell' verb. First, a new scope rule to check and see
what the actor (usually the player) knows:

 [TopicInActor o; !isolate information known by the actor
 switch(scope_stage) {
 2: objectloop(o ofclass KnowledgeTopic &&
 (o.isknownby(actor) ||
 parent(o)==CommonKnowledge))
 PlaceInScope(o);
 return true;
 3: "Who did you want me to say that to?";
 }
];

Next we will extend the 'tell' verb appropriately:

 [TellTopicSub;
 if(noun==actor) {
 L__M(##Tell, 1);
 return;
 }
 second.TellAbout(noun,actor);
];
 Extend "tell" first * creature 'about' scope=TopicInActor -> TellTopic;

And that's it. All the functionality for teaching and learning topics is in place. For
the sake of example, let's give the 'snowwhite' topic the 'learnable' attribute:

 KnowledgeTopic snowwhite magicmirror
 has learnable
 with name 'snowwhite' 'girl'
 , TopicInformation "~Yes, I remember her. But that was long ago.~"
 , KnownBy magicmirror dwarf 0 0 0 0 0 0
 ;

and see our new functionality in action:

 >ask guard about snowwhite
 There is not reply.

 >tell guard about snowwhite
 This provokes no reaction.

 >ask dwarf about snowwhite
 "Yes, I remember her. But that was long ago."

Advanced NPCs, Part 2b: Conversation and Learning

104 Advanced Topics

 >tell guard about snowwhite
 "Yes, I remember her. But that was long ago."

 >ask guard about snowwhite
 "Yes, I remember her. But that was long ago."

Separating Information and Conversation

A drawback to uniting information and knowledge is that we lose the ability to
tailor a response to an NPC's personality. Separating the text that qualifies as
topic information from the text that is character specific addresses this and
creates dialog that is much more fluid and believable. Consider the ways in which
each of the NPCs may differ in their answers regarding 'snowwhite,' as well as the
differing ways that the topic could be broached:

 You hesitate for a moment, then: "Do you remember Snow White?"
 "Yes, I remember her," replies the dwarf with a dreamy
 expression. "But that was long ago." For a moment you think you
 see a tear in his eye.

or

 "Do you remember Snow White?" you ask.
 The guard looks at you with disdain. "Yes, I remember her," he
 says smugly. "But that was long ago."

or

 You look around, making sure no one can see you talking to the
 mirror. "Do you remember Snow White?" you ask it, feeling
 somewhat foolish. For a moment the mirror pauses, as though
 trying to recall something almost forgotten. Then it speaks:
 "Yes, I remember her. But that was long ago."

The narrative that accompanies dialog occurs in many different forms, but breaking
the topic's information into, for example, two pieces can facilitate the use of
most of these forms. The above examples can be accomplished by doing this. Text
for asking about a topic also needs to be introduced:

Jim Fisher

105www.OnyxRing.com

 KnowledgeTopic snowwhite magicmirror
 has learnable
 with name 'snowwhite' 'girl'
 , Query "Do you remember Snow White?" 0 !zero: don't replace punctuation
 , TopicInformation "Yes, I remember her" "." "But that was long ago" "."
 , KnownBy magicmirror dwarf 0 0 0 0 0 0
 ;

Notice that the ending punctuation has been separated from the rest of the text. In
the English language (and shown in the above examples), periods are often
substituted with commas when joining a piece of dialog with a piece of narrative.
This separation gives us the option to replace the punctuation programmatically. It
would be nice if the substitution always occurred, but with some punctuation, such
as the question mark, the punctuation remains and is not replaced by a comma. To
signify this, we can choose a zero value for the punctuation list element.
Additionally, you can see that there are no quotation marks included in the
information text. These will be included or not, by the narrative text.

Adding all of this new diversity to the information objects greatly increases the
complexity. Since we may not always want the complexity we should be able to opt
out of it if we so desire. A fairly good indicator that we don't want to personalize
the text to the NPC is having only one value in the given property. That is, if the
ending punctuation wasn't provided then just print the text and move on. The
following KnowledgeTopic TellAbout routine, together with a new property, does a
basic form of this conversation "blending" provided the telling NPC doesn't provide
a means to do this:

 ... part of the KnowledgeTopic base class
 , TellAbout[to from;
 if((self.#topicinformation/2)>1){
 if(from provides ProcessDialog) {
 from.ProcessDialog(to, PersonalizeTell,
 self, TopicInformation);
 }
 else{
 if(from==player) print "You say, ";
 else print (The)from, " says, ";
 FlushDialog(self,TopicInformation,0);
 }
 }
 else PrintOrRun(self,TopicInformation);
 if(self has learnable) self.MemorizeFor(to);
]

Note that the ProcessDialog routine is called if the NPC provides it. This routine
will parse the topic information and print it through a property we've specified, in

Advanced NPCs, Part 2b: Conversation and Learning

106 Advanced Topics

this case PersonalizeTell. We've made a presumption that if the object provides
ProcessDialog, then it also provides PersonalizeTell. We could check for both, but
if we add them to our NPC base class, then it is really not such a large leap of
faith to presume that the existence of one implies the existence of the other.

 ... part of the NPC base class
 ProcessDialog[talkto procedure knobj info s1 p1 s2 p2;
 s1=(knobj.&info-->0);
 p1=knobj.&info-->1;
 s2=0; !default to nothing
 if((knobj.#info/2)>2){
 s2=knobj.&info-->2;
 p2=knobj.&info-->3;
 }
 self.procedure(talkto, s1,p1,s2,p2);
 FlushDialog(knobj,info,4); !print out remaining text
]
 , TellLine[before s1 canreplace p1 after;!print a single portion of text
 if(s1){print (string)before, (string)s1;
 if(canreplace)print (string)p1; !can replace punctuation?
 print (string)after;
 return true;
 }
 return false;
]
 , PersonalizeTell[talkto s1 p1 s2 p2; !override for npc formating
 if(self.TellLine("~",s1,p1,",","~ "));
 if(self==player) print "you say to ";
 else print (the)self," says to ";
 if(talkto==player) print "you. ";
 else print (the)talkto,".";
 self.TellLine("~",s2,p2,".","~ ");
]

 The routine for wrapping all remaining text in quotes and printing it is best
allocated globally since multiple classes will use it.

 [FlushDialog knobj info start t ;
 if((knobj.#info/2) print"~";
 for(t=start:t<(knobj.#info/2):t=t+2){
 if(t>start) print " ";
 print (string) knobj.&info-->t;
 if(knobj.&info-->(t+1)) print (string) knobj.&info-->(t+1);
 }
 print"~";
];

So why did we pass in PersonalizeTell rather than just calling it from the
ProcessDialog? Doing so enables us to reuse the code in ProcessDialog and
specify other routines for the text customization. We'll use this in a moment when
our characters begin to "ask" as well as "tell."

Now we have the entire framework in place. Alone, we have far better than just
quoted text.

Jim Fisher

107www.OnyxRing.com

 >ask dwarf about snowwhite
 "Yes, I remember her," the dwarf says to you. "But that was long
 ago."

But we can also personalize the telling of topics with regard to the speaking NPC:

 NPC -> dwarf "dwarf"
 with name 'dwarf'
 , PersonalizeTell[talkto s1 p1 s2 p2;
 talkto=0; !disable warning msg
 self.TellLine("~",s1,p1,",","~ replies the dwarf with
 a dreamy expression. ");
 self.TellLine("~",s2,p2,".","~ For a moment you think you see
 a tear in his eye.");
];

 NPC -> guard "guard"
 with name 'guard'
 , PersonalizeTell[talkto s1 p1 s2 p2;
 print "The guard looks at ";
 if(talkto==player) print "you";
 else print (the)talkto;
 self.TellLine(" with disdain. ~",s1,p1,",",
 "~ he says smugly. ");
 self.TellLine("~",s2,p2,".","~ ");
];

 NPC -> magicmirror "magic mirror"
 with name 'magic' 'mirror'
 , PersonalizeTell[talkto s1 p1 s2 p2;
 talkto=0; !disable warning msg
 self.TellLine("For a moment the mirror pauses, as though
 trying to recall something almost forgotten.
 Then it speaks: ~",s1,p1,"."," ");
 if(self.TellLine("",s2,p2,".","~ ")==false) print"~";
]
 ;

Of course, the PersonalizedTell routine works better if stocked with several
variations of text, but this is a good starting point. To completely implement our
examples, we still need to implement a PersonalizedAsk routine. Since the act of
asking is done by the player rather than the NPC, it needs to be implemented
somewhere other than the NPC's life routine. Replacing the standard library's
AskSub routine is the obvious choice:

 replace AskSub;

 [AskSub;
 if(second ofclass KnowledgeTopic)
 second.AskAbout(noun, actor);
 if(RunLife(noun,##Ask)~=0) rfalse;
 L__M(##Ask,1,noun);
];

Advanced NPCs, Part 2b: Conversation and Learning

108 Advanced Topics

Now we can implement the AskAbout routine just as we did TellAbout:

 ...in the KnowledgeTopic class
 , AskAbout[askwho askby;
 if((self provides query)==false) return;
 if((self.#query/2)>1 && askwho has animate or talkable){
 if(askby provides ProcessDialog) {
 askby.ProcessDialog(askwho, PersonalizeAsk,
 self,query);
 }
 }
 else{
 if(askby==player) print "You ask, ";
 else print (The)askby, " asks, ";
 FlushDialog(self, query,0);
 }
 }
 else PrintOrRun(self,query);
 print "^";
]

And add the default PersonalizeAsk routine to the NPC base class:

 ... NPC class
 , PersonalizeAsk [talkto s1 p1 s2 p2; !over-ride for npc formatting
 if(self.TellLine("~",s1,p1,",","~ ")){
 if(self==player) print "you ask ";
 else print (the)self," asks ";
 if(talkto==player) print "you. ";
 else print (the)talkto,".";
 }
 self.TellLine("~",s2,p2,".","~ ");
]

At this point, we've accomplished everything we need to print out the query text
when the player asks about a topic. We've also laid the framework for our NPCs to
ask questions. Personalizing the narrative is accomplished for "ask" in the same
way that it was for "tell." For example, let's add the following personalization to the
guard:

 ...guard instance
 , PersonalizeAsk [talkto s1 p1 s2 p2;
 talkto=0; !disable warning
 if(self==player) print "You hesitate";
 else print (The)self," hesitates";
 self.TellLine(" for a moment, then: ~",s1,p1,".",
 " ");
 if(~self.TellLine("~",s2,p2,".","~ ")) print"~";
]

Jim Fisher

109www.OnyxRing.com

The following code will now cause the guard to ask the dwarf about the snowwhite
topic:

 actor=guard;
 <ask dwarf snowwhite>;

Upon execution, the generated text reads:

 The guard hesitates for a moment, then: "Do you remember
 Snow White? "
 "Yes, I remember her," replies the dwarf with a dreamy
 expression. "But that was long ago." For a moment you think
 you see a tear in his eye.

To top it all off, when all of this narrative diversity is said and done, the guard
has now learned something that he can talk about if asked.

As you look over the guard's PersonalizeAsk routine, you might be wondering
about the "You hesitate" text and the corresponding check to see if the guard and
the player are one and the same. Of course, this is only necessary if you plan of
letting the player "body jump" into the guard, and in a real game, we would want to
make similar changes to the PersonalizeTell routine. As it happens, we can utilize
the standard library's ChangePlayer() routine to demonstrate giving the player the
same conversation abilities that we have given our NPCs:

 <ask dwarf snowwhite>;
 print "^ <Player becomes the guard...>^";
 ChangePlayer(guard);
 <ask dwarf snowwhite>;

Notice that when the player character becomes the NPC, he also inherits the
personalization routines:

 "Do you remember Snow White?"
 "Yes, I remember her," replies the dwarf with a dreamy
 expression. "But that was long ago." For a moment you think
 you see a tear in his eye.

Advanced NPCs, Part 2b: Conversation and Learning

110 Advanced Topics

 <Player becomes the guard...>
 You hesitate for a moment, then: "Do you remember
 Snow White?"
 "Yes, I remember her," replies the dwarf with a dreamy
 expression. "But that was long ago." For a moment you think
 you see a tear in his eye.

A useful technique, even for games where the player does not change, is to create
an NPC that will be the player. This way, questions asked by the player will
have the same customized formatting as questions asked by NPCs.

It should be noted that the pronoun print rules discussed in the previous article "
Pronouns On Steroids" really shine in this area and make coding dialog for these
sorts of dual-purpose NPCs much simpler.

On to More Advanced Techniques

In this section we have covered several advanced topics, that can be used to
customize text to a specific NPC. There's more to come in section 3...

Jim Fisher

111www.OnyxRing.com

Knowledge and Conversation
§3: More Advanced Techniques
(Advanced NPC Implementation, Part 2c)

n the previous section we discussed various methods of sharing
knowledge between characters and customizing the dialog to match a
character. This section will cover additional techniques, such as
topics that change content.

Morphing Topics

A common practice when developing NPCs is to have the character say random
things at various points in the game. Embedded somewhere deep in whatever
daemon controls the NPC can be a couple of lines of code that cause the character
to speak to the player:

 actor=dwarf;
 <tell player smalltalk>;

Although it is certainly possible to create a dozen or so KnowledgeTopics, pick one
at random each turn and have the NPC talk about it, a better way is to create a
morphing topic. That is, a topic that prints something different each time it is
used. Since this technique is best implemented with non-learnable topics,
separating conversation from information need not be done:

 KnowledgeTopic smalltalk
 with name 'smalltalk'
 , KnownBy dwarf
 , TopicInformation[;
 switch(random(4)){
 1: "~There don't appear to be any other dwarves here,~
 says the dwarf. ~I'll have to notify the
 labor board.~";
 2: "~I'm trying to keep my shoes clean,~ says the dwarf. ~My
 brothers are all envious of them.~";
 3: "~Hi-ho!~ spouts the dwarf.";
 4: "The dwarf scratches his bearded chin and says,
 ~Hmmm, I wonder where my children hid my hat.~ ";
 }
]
 ;

Additionally, using a variation of this technique we can customize conversations to
follow a specific script...

Advanced NPCs, Part 2c: Conversation and Learning

112 Advanced Topics

Conversation Script Topics

One of the more difficult challenges that must be faced when writing believable
NPC dialog via the ASK/Tell method is getting the player to ask the right questions.
In many cases there is information that needs to be conveyed to the player to
further the game, yet there is no viable method of forcing him/her to make the
appropriate inquiries. It is true that the occasional hint can be dropped here and
there, but there are often times that hints just don't seem appropriate to the game.

Having an NPC initiate conversation and thereby volunteer this information is a
time-honored method of dealing with situation. In truth, this technique can be
useful even if no pertinent information needs to be conveyed. People initiate
conversation and volunteer trivial information as a matter of common practice. A
realistic NPC should do this as well. Having an NPC follow a "conversation script"
that evolves over a series of turns can help to simulate a conversation and provide
pertinent information if needed.

There is a caveat or two associated with this approach, though. Many developers,
myself included, have implemented this technique and rendered the player helpless
for a time. That is, a situation has been created where the player can do nothing
except wait until the NPC is finished talking. No amount of ingenious dialog can
make up for a lack of interactivity. If the only action available to the player is to
type "z", the game's "player experience" will suffer.

Another thing to consider when designing a conversation script is that people
generally do not repeat the same information unless asked to. In a conversation
where the player actually participates, it is possible that an NPC will be asked a
question earlier than he was scripted to volunteer it. Repeating the information
after it has been already been told is repetitive. What is needed is a way for the
NPC to remember what has already been said and to move on to the next item in
the script.

The "conversation script topic," a variation of morphing topics, is one of the more
useful techniques in creating realistic, non-repeating dialog. It is particularly
powerful because it can utilize other KnowledgeTopic objects so that the
information can be both asked for and volunteered.

A couple of minor modifications should be implemented to facilitate knowledge
scripts. The first is a method of recording whether or not a topic has been

Jim Fisher

113www.OnyxRing.com

communicated before. We can accomplish this by defining and setting an attribute.
Arbitrarily, we'll call this 'hasbeentold':

 attribute hasbeentold;

The next modification we can make will ensure that the NPC doesn't "double talk"
or say two things at once. This can happen when the NPC is following a script and
the player asks a question. If not coded correctly, the NPC will answer the
question and then continue to say whatever comes next on the topic script. Game
conversation seems to more closely parallel reality if the NPC only "drives" the
conversation when the player isn't talking to him. To accomplish this, we can add
a property to the NPC class that records the last move he/she spoke in:

 ...add to NPC class
 , LastMoveSpoken 0

These values can be updated when a topic is conveyed. The TellAbout routine, in
the KnowledgeTopic class, is the obvious place:

 ...in the KnowledgeTopic class
 , TellAbout[to from;
 if(from provides LastMoveSpoken)
 from.LastMoveSpoken=turns+1;
 give self HasBeenTold;
 if((self.#topicinformation/2)>1){
 if(from provides ProcessDialog)
 from.ProcessDialog(to, PersonalizeTell,
 self, TopicInformation);
 else{
 if(from==player) print "You say, ";
 else print (The)from, " says, ";
 FlushDialog(self,TopicInformation,0);
 }
 }
 else PrintOrRun(self,TopicInformation);
 if(self has learnable)
 Self.MemorizeFor(to);
]

The final new addition that we will make to the KnowledgeTopic object, which we
have been developing in this article, is a routine called SayOrRecurse. The sole
purpose of this routine is to facilitate a conversation script. This routine, which is
called by the TellAbout routine, checks to see if the specified KnowledgeTopic has

Advanced NPCs, Part 2c: Conversation and Learning

114 Advanced Topics

already been conveyed. If not, then it will print it and return. If so, then the
TellAbout routine of the current object is called (recursively) to request the next
scripted topic:

 ...from KnowledgeTopic class
 , SayOrRecurse [o to from;
 if(o hasnt hasbeentold) o.TellAbout(to, from);
 else self.TellAbout(to, from);
]

Opinions vary concerning the use of recursion. Suffice it to say, misuse of this
technique can cause run-time errors in the Z-Machine interpreter. Although it can
be a useful addition to your conversation repertoire, use this method with care.

Before creating a conversation script, an author should have a clear idea of how
the conversation should flow. A design technique used by many authors is to write
the entire conversation the way they would prefer it to read first. Once this has
been done, the conversation can be logically separated into pieces. Almost always,
these pieces of text can be classified into two categories: dialog that is the
answer to a question which the player will possibly ask, and dialog that will
never be asked about, and serves no purpose other than to make the NPC seem
more believable.

The former type, which can be inquired about, is best stored in a KnowledgeTopic
of it's own. Generally, these types of dialog pieces will compromise the bulk of a
conversation script. The latter type more often appears at the beginning and end of
a script. Generic statements, such as variations of "hello," and "goodbye", are
classified in this category.

What follows is an example script object for a conversation between a doctor and
the player who has just woken up in a hospital. Notice that script steps 2, 3, and 4
utilize three other KnowledgeTopics and so will be brought up, even if not directly
asked about by the player.

 KnowledgeTopic DocScript_t
 with count 0, KnownBy doctor
 , TellAbout[towho fromwho;
 self.count=self.count+1;
 switch(self.count) {
 1: print "^~How are you feeling, Mr. Valentine? I'm pleased to
 see you've awakened,~ the man says to you. ";
 2: self.SayOrRecurse(doc_who_t,towho, fromwho);

Jim Fisher

115www.OnyxRing.com

 3: self.SayOrRecurse(doc_me_t, towho, fromwho);
 4: self.SayOrRecurse(hosp_where_t, towho,fromwho);
 5: print "~Okay then,~ says the doctor as he opens the door. ~If you
 have anymore questions, feel free to buzz the nurse.~ He
 leaves and closes the door behind him.";
 self.TellAbout=NULL;
 }
]
 ;
 KnowledgeTopic doc_who_t
 with name 'him' 'himself' 'man' 'doc' 'doctor' 'who'
 , KnownBy doctor
 , query "^~So who are you?~ I asked the man. "
 , TopicInformation "^~My name is Doctor Harris. I'm the resident
 Nuerological specialist.~ ^^~Nuerological.~ You repeat,
 then touch your head probingly. No bandage.^^The doctor
 nods. "
 ;
 KnowledgeTopic doc_me_t
 with name 'myself' 'self' 'me' 'head' 'damage' 'condition'
 , KnownBy doctor
 , query "^~So what's my condition, Doc?~ You ask."
 , TopicInformation "^^~You're the talk of the hospital right now,~ he replies.
 ~You've been comatose for several weeks. CAT scans showed
 extreme cerebral dysfunction. To be frank, the prognosis was
 bleak.^^~This morning, for no apparent reason, monitors
 registered a return to normal brain activity. Further examination
 showed burned tissue and broken ribs healed. I've never seen
 anything like it before.~^^Cerebral dysfunction... You think
 about that for a moment when it suddenly dawns on you that
 you cannot remember anything about yourself, including your
 own name!"
 ;
 KnowledgeTopic hosp_where_t
 with name 'where' 'hospital' 'location'
 , KnownBy doctor
 , query "^~So where am I?~ ,You ask the doctor. "
 , TopicInformation "^~You're at Saint Augustine Hospital.~^Saint Augustine.
 You don't recognize the name. "
 ;

Additionally, a believable NPC will have a collection of additional topics that are
not volunteered, but are clarifications of statements made in the script. This NPC
will be able to answer questions the player may have in the course of the
conversation but will not volunteer this information unless directly asked about it:

 KnowledgeTopic doc_amnesia_t
 with name 'memory' 'amnesia'
 , KnownBy doctor
 , query "^~So could my memory be affected?~ You ask."
 , TopicInformation "^^~Certainly,~ he said.
 ~Without a doubt, the explosion, and
 events immediately preceding and following it would be
 unclear to you. That's normal. There may even be
 more substantial memory loss.~"
 ;
 KnowledgeTopic explosion_t
 with name 'explosion'
 , KnownBy doctor
 , query "^~What happened? You said I was in an explosion? ~"
 , TopicInformation "^^A sad look comes across the doctor's face.
 ~I'm afraid that I don't know many of the details behind what
 happened to you. I only know that there was an explosion of some kind.
 I have no information as to the condition of your family.~^^You watch
 his eyes as he says this to you. For reasons you don't know, you
 concentrate upon pupils as they dilate. In the back of your head, some
 forgotten memory tells you that this means he is lying. "
 ;

Advanced NPCs, Part 2c: Conversation and Learning

116 Advanced Topics

Now that we have a workable script, we need an NPC capable of driving the
conversation:

 NPC -> doctor "man"
 with name 'doc' 'doctor' 'harris' 'man'
 , description "The man is dressed in a white coat. He
 appears to be a doctor."
 , each_turn[; if(self.LastMoveSpoken==turns) return;
 if(DocScript_t provides TellAbout)
 DocScript_t.TellAbout(player,self);]
 ;

This simple NPC will converse with the player each turn about our script object.
The conversation can happen in several different ways now. One possible play out
of the script follows:

 "How are you feeling, Mr. Valentine? I'm pleased to see you've
 awakened," the man says to you.

 >x man
 The man is dressed in a white coat. He appears to be a doctor.
 "My name is Doctor Harris. I'm the resident Nuerological specialist."

 "Nuerological." You repeat, and then touch your head probingly. No bandage.
 The doctor nods.

 >ask doc about head
 "So what's my condition, Doc?" You ask.
 "You're the talk of the hospital right now," he
 replies. "You've been comatose for several weeks. CAT
 scans showed extreme cerebral dysfunction. To be frank, the prognosis
 was bleak.

 "This morning, for no apparent reason, monitors registered a return
 to normal brain activity. Further examination showed burned tissue and
 broken ribs healed. I've never seen anything like it before."

 Cerebral dysfunction... You think about that for a moment when it suddenly
 dawns on you that you cannot remember anything about yourself, including
 your own name!

 >ask doc about hospital
 "So where am I?", You ask the doctor.
 "You're at Saint Augustine Hospital."

 Saint Augustine. You don't recognize the name.

 >ask doc about memory
 "So could my memory be affected?" You ask.
 "Certainly," he said. "Without a doubt, the explosion, and events
 immediately preceding and following it would be unclear to you. That's
 normal. There may even be more substantial memory loss."

 >ask doc about explosion
 "What happened? You said I was in an explosion?"
 A sad look comes across the doctor's face. "I'm afraid that I
 don't know many of the details behind what happened to you. I only know
 that there was an explosion of some kind. I have no information as to the
 condition of your family."

 You watch his eyes as he says this to you. For reasons you don't know,
 you concentrate upon his pupils as they dilate. In the back of your head,
 some forgotten memory tells you this means he is lying.

Jim Fisher

117www.OnyxRing.com

 >z
 Time passes.
 "Okay then," says the doctor as he opens the door. "If you have
 anymore questions, feel free to buzz the nurse." He leaves and closes
 the door behind him.

Of course this is just a basic example, but notice that the script adapts and skips
over topics already asked about by the player. This technique has the advantage of
ensuring that the player gets information, even if he does not think to ask the
appropriate question, but also adapts to a player's questions, ensuring a more
realistic conversation.

Inanimate Knowledge Transfer

It was mentioned above that characters are not the only objects that can utilize
the knowledge objects. Any book, such as "Waldecks's Mayan dictionary" from the
Inform Designer's Manual, or the ever-popular spell book is an ideal candidate
for an inanimate object housing KnowledgeTopics. The consult verb should be
extended much as the tell verb was:

 [ConsultTopicSub; second.TellAbout(actor,noun);];

 extend "consult" first * noun 'about' scope=TopicInTarget-> ConsultTopic
 * noun 'on' scope=TopicInTarget -> ConsultTopic ;

Now we can create the spell book with a specialized ProcessDialog routine,
specifically tailored to a reference book:

 Object -> spellbook "dusty old spell book"
 with name 'spell' 'book' 'dusty' 'old'
 , ProcessDialog [talkto procedure knobj info;
 talkto=procedure; !warning supression
 print "Flipping through the old book uncovers the following entry:^";
 FlushDialog(knobj,info,0);
]
 ;

And of course a spell for the spell book:

 KnowledgeTopic lightspell
 has learnable

Advanced NPCs, Part 2c: Conversation and Learning

118 Advanced Topics

 with name 'lumos' 'light'
 , KnownBy spellbook 0 0 0 0 0 0 0 0 0
 , TopicInformation "The lumos spell provides light" "."
 ;

Since the spell book is not a "creature," as defined by the standard library, we
cannot tell the spell book anything (this is a good thing), and so the spell book
cannot learn new KnowledgeTopics as NPCs do.

In a sense, a journal can "learn" about a topic when someone writes in it. A good
exercise for the reader would be to implement a "write" verb in which knowledge
can be recorded in non-animate objects.

In Closing

The reader may have noticed that, although Ask and Tell are thoroughly discussed
in this article, Answer (or say) has been left relatively untouched. It has been my
experience that it is often best to treat Answer and Tell as two forms of the same
command. Essentially, I choose to treat:

 >Say snowwhite to dwarf

in the same manner as I would treat:

 >tell dwarf about snowwhite

As stated previously, my way is not the only way. Distinguishing between the two
commands may be useful in a number of scenarios. The above "spell book"
example, set in a world where characters cast spells, would be one such situation.
For example,

 >say lumos

would be better handled in the same manner as

Jim Fisher

119www.OnyxRing.com

 >cast lumos
 A bright light appears and brightens the room.

instead of

 >tell dwarf about lumos
 You give the dwarf a condescending gaze. "The lumos
 spell provides light," You say.

This distinction is best made by the developer.

Also, in the interest of avoiding dependencies, all references to specialized print
rules have been left out of the samples above. Pronoun print rules, however, are
especially useful when creating the sort of conversation topics that we have been
developing in this article. Techniques discussed in the previous article "Pronouns
on Steroids" can be of significant aid.

About the Examples...

To aid the reader, the examples given in all three sections of this article have been
bundled together in single source file.

Additionally, the ORLibrary entries ORKnowledgeTopic.h and ORNPC.h contain a
complete, and somewhat more progressive, implementation of the techniques
discussed in this article.

For review

Emily Short's page on NPC design, although geared for platform independence and
not for Inform specifically, is nevertheless inspirational in its discussion.

Additionally, her game "Galatea", is an exquisite example of NPC conversation.

Also, although mentioned previously, the conversation section of Roger Firth's
Infact page is especially recommended.

Advanced NPCs, Part 3: NPC Actions

120 Advanced Topics

Advanced NPC Implementation, Part 3
NPC Actions

erb subroutines do it all. They enforce gravity; they differentiate
between light and darkness; they decide where a character can travel.
These little routines implement the laws of physics in our game world
and govern what can and cannot be done. Yet for some reason,

historically they only affect the player character. The game world laws that
restrict the player do not bind NPCs. The following code exemplifies:

 object room "room"
 has light
 with description "This is an empty room."
 ;
 object->"guard" has animate
 with name 'guard'
 , orders [;
 take: move noun to self;
 print_ret (The)self," takes ",(the)noun,".";
]
 ;
 object->"table" has static supporter with name 'table';
 object->->"apple" has edible with name 'apple';

The guard has now been coded to respond to the "take" order and does so too
well. In the above example, he will successfully "take" pretty much anything in
scope, even things that he should not be able to:

room
 This is an empty room.

 You can see a guard and a table here.

 >take table
 That's fixed in place.

 >guard, take table
 The guard takes the table.

 >guard, take self
 The guard takes yourself.

 It is now pitch dark in here!

Obviously this sort of "empowered taking" holds a very narrow slice of the "desired
NPC abilities" pie. By convention, the filtering of what an NPC cannot do is also
coded in the appropriate routine:

Jim Fisher

121www.OnyxRing.com

 ... replace the guard's previous orders routine
 , orders [;
 take:
 if(noun hasnt static && noun~=player){
 move noun to self;
 print_ret (The)self," takes ",(the)noun,".";
 }
 print_ret (The)self," cannot take that.";
]

For the majority of Inform works, that's the way NPC action is accomplished.
Piles and piles of example source code and sample NPCs follow this convention of
manipulating the game world directly. There are some drawbacks to this, however:

· This technique is repetitious. Putting the same rules in the NPC's reaction
routines duplicates code that exists in the library's verb routines.

· This technique can be overly complex. The library considers numerous variables in
its efforts to implement the game world. It is very easy to overlook details when
writing this sort of code. For instance, in the above example, the guard cannot
pickup the player or objects with the "static" attribute, but there is nothing
stopping him from taking either "untouchable" objects, or other animate objects.
For instance, the guard could take a key contained inside of a locked, glass box
(transparent) without breaking the glass. He could also take another NPC behind a
locked, cell door. To imitate the library, we would have to code for these
circumstances as well.

· New verbs, such as "cast spell" or "mount horse" are unavailable to the NPC without
additional coding too.

· This technique does not respect an object's "before" routines, which may interrupt
an action.

· By its very nature, this technique limits NPC design, since everything that an NPC
can do must be coded for explicitly.

Fear not, for there is another, more powerful way...

Redirecting to Verb Routines

A more intuitive solution is to leverage the verb routines themselves. Successful
implementation of this method addresses all of the above drawbacks and actually
makes the code more readable. At first glance, it seems a deceptively simple
means of implementing NPC actions. Many new developers have posted questions
to the RAIF newsgroup asking what was wrong with their code and why redirecting
actions doesn't seem to work. The following is an example or redirecting an
ordered action using the library's "action and return" operator (<<...>>):

 object->"guard" has animate
 with name 'guard'
 , orders [; take: <<take noun>>;]
 ;

Advanced NPCs, Part 3: NPC Actions

122 Advanced Topics

In the initial test of this example, everything appears to work fine:

room
 This is an empty room.

 You can see a guard and a table (on which is an apple) here.

 >guard, get apple
 Taken.

It is not until you look with a little more scrutiny that the flaw in this approach
appears:

 >i
 You are carrying:
 an apple

The library's verb routines presume that the player carries out all actions. The
player is therefore the one that actually picked up the apple. This is unfortunate,
but not insurmountable.

Actor, Good; Player, Bad

The standard library is glorious. It is, perhaps, the most useful collection of IF
routines ever created. To look upon the Library's code is to be humbled.

Now then, having appropriately praised the library, we can now proceed with a
slightly more critical discussion of it. In particular, if there is one area where I
feel the library should have been written differently, it is library verbs and
messages. Specifically, these two aspects of the library rely upon the "player"
variable, rather than the "actor" variable. See how forcing the player variable to
momentarily equal the actor variable almost fixes the above behavior:

 ... replace the guard's previous orders routine
 , orders [save retval;
 save=player;
 player=actor;
 <take noun>;
 player=save;
 return retval;
]

Jim Fisher

123www.OnyxRing.com

 >guard, get apple
 Taken.

 >i
 You are carrying nothing.

Of course this is simply a patch, and it prevents us from completing our
implementation of NPC actions, as we'll see below. A legitimate solution would
replace the library's verb and verb-helper routines with slightly modified versions
that check the actor variable rather than the player variable. We can do this pretty
easily to the "take" and "eat" verbs by cutting-and-pasting the appropriate
routines from verblibm.h and then running a search-and-replace against them to
change references to "player" into references to "actor":

 !only slightly changed from the standard library
 [TakeSub;
 if (onotheld_mode==0 || noun notin actor)
 if (AttemptToTakeObject(noun)) rtrue;
 if (AfterRoutines()==1) rtrue;
 notheld_mode=onotheld_mode;
 if (notheld_mode==1 || keep_silent==1) rtrue;
 L__M(##Take,1);
];
 [EatSub;
 if (ObjectIsUntouchable(noun)) return;
 if (noun hasnt edible) return L__M(##Eat,1,noun);
 if (noun has worn){
 L__M(##Drop,3,noun);
 <Disrobe noun>;
 if (noun has worn && noun in actor) rtrue;
 }
 remove noun;
 if (AfterRoutines()==1) rtrue;
 if (keep_silent==1) rtrue;
 L__M(##Eat,2,noun);
];
 [AttemptToTakeObject item ancestor after_recipient i j k;
 ...also needs to be updated since it is called from TakeSub
];
 [ObjectIsUntouchable item flag1 flag2 ancestor i;
 ...also needs to be updated since it is called from EatSub
];

As shown above, both TakeSub and EatSub call additional routines that also need
to be updated in the same fashion. These are AttemptToTakeObject and
ObjectIsUntouchable. We won't reprint the modified versions of these two routines
since they are long and the changes are minute, but the point should be made that
a simple search-and-replace fixes these as well.

Advanced NPCs, Part 3: NPC Actions

124 Advanced Topics

Adding the four modified routines to your source code and putting the appropriate
replace directives at the top makes the take and eat verbs available to the NPC
without having to change the value of the player variable.

 replace TakeSub;
 replace EatSub;
 replace AttemptToTakeObject;
 replace ObjectIsUntouchable;

Also, ObjectIsUntouchable is called by numerous other verbs, and TakeSub is
called by derivatives verbs. By replacing these four routines, we have also
automatically made available to NPCs, all of the following routines and thus their
corresponding verb forms:

TakeSub

EatSub

PullSub

PushSub

TurnSub

LockSub

UnlockSub

SqueezeSub

SwitchOnSub

SwitchOffSub

EmptySub

RemoveSub

DisrobeSub

WakeOtherSub

Since so many verbs are available to the NPC we will now drop the use of the
library's "action" operators (and >) in favor of the library's more generic routine,
ActionPrimitive. This allows us to forego addressing the implied switch(action)
statement that exists in all "reaction" routines (such as orders, life, before, etc...)
and redirect all orders to the appropriate verbs with a single line of code:

 ... replace the guard's previous orders routine
 , orders [; return ActionPrimitive();]

As we now have the ability to have the guard act for us, we can proceed with
ordering him about and testing the affect of using "actor" instead of "player" in
verb routines. Notice how drop, which has not yet been updated, does not function

Jim Fisher

125www.OnyxRing.com

correctly:

 >guard, get apple
 Taken.

 >guard, drop apple
 You haven't got that.

 >guard, eat apple
 You eat the apple. Not bad.

What's with "YOU eat the apple?" It's understandable that the guard could not
drop the apple since DropSub has not been updated, but why didn't the guard eat
the apple?

Morphing Library Messages

Actually, the guard did eat the apple, but the default library message for the
verb "eat" was written expecting the PC to be the only character eating. It, and
many more library messages, will need to be changed to accommodate this whole
new world of NPC actions. Usually, the recommend way of overloading a library
message is to declare a LibraryMessages object between "Parser.h" and
"Verblib.h" and implement it in the before routine. The following replacement for
the "eat" message demonstrates this approach:

 object LibraryMessages
 with before[;
 Eat:
 if(lm_n==2){
 if(actor==player) print "You eat ";
 else print (The)actor," eats ";
 print (the) noun, ".";
 if(actor==player) print" Not bad.";
 return;
 }
];

Notice that the message now changes form depending on who is performing the
action:

 >guard, take apple then eat it
 Taken.
 The guard eats the apple.

Advanced NPCs, Part 3: NPC Actions

126 Advanced Topics

or,

 >take the apple then eat it
 Taken.
 You eat the apple. Not bad.

The number of library messages that need to be changed in order to implement
NPC actions is somewhat excessive. Because of this, duplicating the language
definition file (English.h) and making modifications there (specifying the modified
file on the Inform command line or in the ICL file) may be a preferable method to
instantiating a LibraryMessages object.

Initiating NPC Actions

For the examples given above, we have been calling ActionPrimitive() from within
the NPC's orders routine. This has been convenient because all of the necessary
library variables have already been set up for us. When the player is not issuing
orders at run-time, however, we need to set these values ourselves. Additionally,
there are another couple of complications that we must address:

1) The ActionPrimitive() routine does not honor the "before" property routines like
"action notation" does (<<action>>); In order to achieve this we mush make the call
ourselves.

2) Floating objects may not be in scope for the actor.

These issues can be addressed in a common routine, which seems to be most at
home as part of an NPC base class:

 class NPC
 with DoVerb[act n s svAL svActr svActn svN svS svInp1 svInp2 retval;
 svAL=actors_location;
 svActr=actor;
 svActn=action;
 svN=noun;
 svS=second;
 svInp1 = inp1;
 svInp2 = inp2;
 actors_location=parent(self);
 actor=self;
 action=act;
 noun=n;
 second=s;
 inp1 = noun;
 inp2 = second;
 MoveFloatingObjects();
 retval=BeforeRoutines();
 if(retval==false) retval=ActionPrimitive();

Jim Fisher

127www.OnyxRing.com

 actors_location=svAL;
 actor=svActr;
 action=svActn;
 noun=svN;
 second=svS;
 inp1 = svInp1;
 inp2 = svInp2;
 MoveFloatingObjects();
 return retval;
];

Additionally, BeforeRoutines() and AfterRoutines(), and MoveFloatingObjects()
should all be modified in the same fashion as was discussed above. One exception
to this "player equals actor" rule is in the call to the player's ORDERS property in
the BeforeRoutines() method. This section of code should only be run if the player
and actor are the same, otherwise an endless recursion results the will blow the
interpreter's stack. A slightly modified BeforeRoutine() which addresses this
follows:

[BeforeRoutines;
 if(GamePreRoutine()~=0) rtrue;
 if(actor==player && RunRoutines(player,orders)~=0) rtrue;
 if(location~=0 && RunRoutines(parent(actor),before)~=0)
 rtrue;
 scope_reason=REACT_BEFORE_REASON; parser_one=0;
 SearchScope(ScopeCeiling(actor),actor,0);
 scope_reason=PARSING_REASON;
 if(parser_one~=0) rtrue;
 if(inp1>1 && RunRoutines(inp1,before)~=0) rtrue;
 rfalse;
];

Assuming our NPC is derived from the NPC class, this addition will allow us to
direct NPC actions from any section of code (like a controlling daemon):

 !equates to "guard, put apple on table"
 guard.DoVerb(##PutOn, apple, table);

A Peek Inside Pandora's Box

Perhaps the reason this technique is not often seen is the number of convoluted
changes that need to be made in order to implement it. At times, implementation of
this technique can seem horribly daunting.

The examples given above are far from complete. In addition to the excessive
number of messages that must be modified, a quick scan through the verblibm.h

Advanced NPCs, Part 3: NPC Actions

128 Advanced Topics

file uncovers the following verb routines that need to be updated (only two of
these were done in the above examples):

InvSub

TakeSub

DropSub

PutOnSub

InsertSub

TransferSub

GiveSub

ShowSub

EnterSub

GetOffSub

ExitSub

GoSub

LookSub

ExamineSub

LookUnderSub

ExitSub

TouchSub

WaveSub

PushSub

KissSub

ThrowAtSub

TellSub

AskSub

OpenSub

WearSub

EatSub

There are also several additional routines what are called by these verb subs that
also need to be updated. Further, in many of these routines, there are references to
the library variables "location" and "real_location." These need to be changed to the
library variable "actors_location."

Obviously a complete implementation of this technique requires major modifications
to the library, but once done allows for greater flexibility with simplified, yet
more powerful, coding capabilities. Additionally, since the "actor" variable and
the "player" variable are normally the same, these changes are transparent. That
is, the new behavior only occurs when the new functionality is used and does not
affect existing code. Without calling NPC actions, games run as they always have.

A Note on Code

Jim Fisher

129www.OnyxRing.com

The examples above were given to demonstrate this technique, but they do not
necessarily represent the best way to implement it. The definition of what is
"best" is left up to the reader. As a suggestion, however, rewriting messages to
change form can be a convoluted and monotonous task. The print rules discussed
in §1 of this article series "Pronouns on Steroids" are particularly useful.

As a final point, it should be noted that a complete implementation of the
techniques discussed in this article can be found at the ORLibrary in the entries
ORNPCVerb.h, OREnglish.h, and ORNPC_doverb.h.

A special thanks goes out to Stephen Robert Norris, whose input and bug fixing in
the ORLibrary necessarily impacted this article.

An Inform Developer's Guide

130 Tutorials

An Inform Developer's Guide

131www.OnyxRing.com

Part F
Tutorials

An Inform Developer's Guide

132 Tutorials

Jim Fisher

133www.OnyxRing.com

Coming soon... A tutorial based on the Wade Wars!

An Inform Developer's Guide

134 Informed Tips

An Inform Developer's Guide

135www.OnyxRing.com

Part G
Informed Tips

An Inform Developer's Guide

136 Informed Tips

Jim Fisher

137www.OnyxRing.com

Randomizing Random

rom time to time, while reading RAIF postings, the subject of
repeating random numbers comes up. For all appearances, this

seems to be some sort of bug in one of the most popular and widely
used Z-Code interpreters available today: Frotz. Reports seem to

indicate that it affects various versions of Frotz. While researching this issue and
developing a work around, I was able to confirm the behavior with WinFrotz version

2.32 release 5.3.

As an IF player, one might be tempted to simply change to a different interpreter,
but a developer doesn't have that option. One of the beauties of the Z-Code

standard is that it allows the players to choose their own interpreter. And to be
perfectly frank: Frotz is too darn popular to ignore.

Show me the bug!

Before delving into the explanation of why this behavior occurs and how to fix it,
let me include a code snip to demonstrate the bug (note: the standard library isn't

really needed here to demonstrate this bug, but I prefer that sample code resemble
real-world scenarios as closely as possible.)

 Include "Parser"; Include "VerbLib"; !library includes
 Object SimpleRoom "Simple Room" !single room
 with description "This is a simple room"
 has light
 ;
 [Initialise;
 random(0); !Z-code standard says
 !that this command is
 !SUPPOSED to initialize
 !the random number generator
 location=SimpleRoom;
];
 Include "Grammar"; !library include
 Verb "rand" !!! an example rand command
 * -> rand
 ;
 [randsub t; !implementation of new verb
 for(t=1:t<10:t++)
 print random(100),"^";
];
 end;

This is a pretty straightforward example. One room and a grammar rule the prints
ten random numbers. Compile this, and run the resulting .Z5 file under Frotz. At

Randomizing Random

138 Informed Tips

the command prompt enter in the command "RAND" and you'll see the ten random
numbers printed. Looks good so far.

Now write down these ten numbers and enter the command "RESTART". At the
new command prompt enter "RAND" again. If your interpreter suffers from this bug,
then the new list of ten numbers will match the first list exactly.

Now this method of checking for the behavior will always demonstrate it if it exists.
Period. But the behavior will often pop up in less predictable ways. For instance, it
is possible to:
 1) start Frotz
 2) run this example
 3) record the ten "random numbers"
 4) exit Frotz entirely
 5) start Frotz again
 6) run the example again...

...And still get the same random sequence. Because of the way random numbers
work, this method will not always be the same. But often they will.

But why? Aren't random numbers random?

No, actually they are not. All random numbers generated by modern computers are
actually pseudo-random numbers, which are the result of a mathematical formula
that is applied against the previously produced number.

If you didn't catch that don't worry about it. Think of it like this: That list of
ten numbers that was generated in the example program above is associated with
another number called a "seed" value. Behind the scenes, the interpreter has the
job of setting this seed value. This called "seeding the random number
generator." Seeding the generator with the same value will always produce the
same list. That doesn't make for a very random program. Traditionally, to
achieve a non-repeating sequence every run, the random number generator is
seeded with the current time represented in seconds elapsed since 1980.

In Inform, this is not possible since 1) there does not appear to be a way to seed
the generator even if we had a seed value, and 2) there is not a readily available
method that will return a non-predictable result to use as a seed value. According
to the Z-code standard, calling random(0); is supposed to accomplish both of these,
but as is the case with WinFrotz, not all interpreters have this implemented.

The Fix...

Jim Fisher

139www.OnyxRing.com

Luckily, there is a way of accomplishing the first task's desired effect without
"seeding" the generator at all. Specifically, cycle through the random-number
generator a random number of times. Given a single static list of randomly
generated numbers, a non-predicatable sequence can be achieved simply by
starting at a random location in the list. Think of this as pseudo-seeding the
pseudo-random number generator.

"What's that?" you say. "Random numbers are what we are unable to get here.
How do you get a random number to use for iterating through the generator with?"
You don't. Instead you choose a number that will almost always be different every
time you run. Some programmers opt to use a value equal to the current number of
game moves elapsed once the player performs some arbitrary task (like entering a
room). But that still leaves the game predictable, just less so.

The solution shown below measures the only thing that is bound to be different
every game: the length of time it takes a user to enter text and press return in
milliseconds!

This solution also has the advantages of being both reusable and transparent. It is
reusable in that it is not game specific. It isn't tied to a specific event or
action. It works with any game without modification. It is transparent in that the
developer has to do nothing other than include the text. No special reference
needs to be made to it. No methods need to be called. The block of code can be
implemented at the top of any game source file and work. It's just drop and go
code.

 REPLACE KeyboardPrimitive;
 global randseed=0;
 [KeyboardPrimitive a_buffer a_table t;
 if(randseed>0) !Already randomized,
 !so use library code
 read a_buffer a_table;
 else !otherwise, get and randomize
 {
 @aread a_buffer a_table 1 procrandseed t;
 for(t=0:t<randseed:t++) random(1);
 }
];
 [procrandseed;
 randseed++;
 return false;
];

Just cut and paste this code to the top of the example code we worked with
earlier. Recompile and run the tests again to see the behavior corrected.

Making VERBOSE the default mode

140 Informed Tips

Making VERBOSE the default mode
The Inform Library provides three commands for players to control how rooms are
described: VERBOSE prints a room's full description every time you go there,
BRIEF prints the full description only on your first visit, and SUPERBRIEF never
prints the full description.The Library's default setting is BRIEF, but many
authors (and players) prefer VERBOSE behaviour -- to have a room fully
described on each visit. Of course, just typing a VERBOSE command achieves
this, but it's annoying to have to remember every time: much more convenient to
make VERBOSE the standard setting.The Library uses a global variable lookmode
 which can take the values 1 (BRIEF), 2 (VERBOSE) and 3 (SUPERBRIEF), and w
ich is initialised to 1 in the parserm.h file. So, to make VERBOSE the default, you can
either just edit that file, or better (since it's preferable where possible to over-ride
the Library rather than change it) add this line to your Initialise() function:

lookmode = 2; !! default is VERBOSE mode

At a mimimum, that's all you need to do. However, here are three additional
changes that you may wish to incorporate. First, the message printed by the
BRIEF command starts off:

YOURSTORY is now in its normal "brief" printing mode...

when of course BRIEF now isn't the normal mode. Second, the command
NORMAL should be a synomym for VERBOSE rather than for BRIEF. Finally, you
may consider that players should always see a room's full description at least
once; therefore, you wish to disable entirely the SUPERBRIEF command. Here's
the skeleton of a game which does all this:

Constant Story "MyStory";

Constant Headline "^An example game.^";

Include "Parser";

Object LibraryMessages with before [; !! replace three Library messages

 LMode1: " is now in its ~brief~ printing mode, which gives long descriptions

 of places never before visited and short descriptions otherwise.";

 LMode2: " is now in its normal ~verbose~ mode, which always gives long

 descriptions of locations (even if you've been there before).";

 LMode3: " doesn't support ~superbrief~ mode.";

];

Roger Firth

141www.OnyxRing.com

Replace LMode3Sub; !! don't use original Library routine

Include "VerbLib";

[Initialise;

 lookmode = 2; !! default is VERBOSE mode

 location = hall;

 "^^Adventures don't get much simpler than this.^^";

];

[LMode3Sub; print (string) Story; L__M(##LMode3);]; !! replacement routine

Class Room

 has light;

Room hall "Hall"

 with description "A door leads south from the hall...",

 s_to study;

Room study "Study"

 with description "A door leads north from the study...",

 n_to hall;

Include "Grammar";

Extend only 'normal' replace * -> LMode2; !! NORMAL = VERBOSE

Using TextPad with Inform

142 Informed Tips

Using TextPad with Inform
TextPad is a splendid text editor for Windows: powerful, packed full of useful
features, and still easy to use. It's available as a shareware download from
www.textpad.com. While there, also visit www.textpad.com/add-ons/to download
txplink4.zip (which fixes Windows so that attempts to call the much inferior NotePad
simply fire up TextPad instead), and www.textpad.com/add-ons/hmsyn.htmlto fetch
inform2.zip.
Once you've downloaded those files, do this:
· run the downloaded tpengNNN.exe and follow its install process,
· unzip inform2.zip, placing the resulting inform2.syn in the TextPad\Samples

folder, and
· unzip txplink4.zip and follow the setup instructions therein.

Even if you do nothing else, you've got yourself a crackin' good editor. However,
it's very straightforward to teach TextPad some tricks which will greatly enhance
your Inform productivity.Creating a TextPad document class
A document class is a family of files having the same extension: for Inform, that's
.INF. Follow these steps:

· Start TextPad.
· From the menu bar, select Configure > New document class... to

display the Document Class Wizard.
· Enter a class name of Inform, and then click Next.
· Enter a class membership of *.INF, and then click Next.
· Click to enable syntax highlighting, select Inform2.syn from the dropdown

list, and then click Next.
· Click Finish.
· Select Configure > Preferences..., click to open the list of Document

Classes, and click to open Inform. Specify how you want your game
files to appear.

· Click OK.

Now, any Inform source file that you edit will automatically use syntax highlighting
and the other display preferences that you've set. Easy!Running the compiler
within TextPad
Here's how to configure TextPad so that a single keystroke automatically compiles
the file that you're editing. Follow these steps:
· Start TextPad.

Roger Firth

143www.OnyxRing.com

· From the menu bar, select Configure > Preferences..., and click
Tools.

· From the dropdown Add list, select Program.
· In the Select File dialog, navigate to the folder containing infrmw32.exe,

select it, and then click Open.
· In the Preferences dialog, click Apply.
· Click to open the list of Tools, and click Infrmw32.
· Change the Parameters to (for example)

+include_path=.\,.\Library,..\Library $File. This tells the compiler
to look for Included files in the current folder, then in a Library
sub-folder, and finally in a Library folder alongside the current
folder. Change these settings to suit your personal preference.

· Glulx only: You may also need one other change to get error message
handling to work properly; see the note below.

· Click OK.

If you select Tools from the menu bar, you'll see Infrmw32has appeared as the
last item, with a keyboard shortcut of Ctrl+1. Try it: open an Inform file in
TextPad, hold down the Ctrl key, and press 1. If you're lucky, you'll see "Tool
completed successfully". More likely, you'll get some compiler error messages.
Double-click on one of those messages to jump straight to the appropriate line in
your Inform file.
Running the interpreter within TextPad
Use exactly the same process so that a single keystroke runs the interpreter.
Follow these steps:
· Start TextPad.
· From the menu bar, select Configure > Preferences..., and click

Tools.
· From the dropdown Add list, select Program.
· In the Select File dialog, navigate to the folder containing WinFrotz.exe,

select it, and then click Open.
· In the Preferences dialog, click Apply.
· Click to open the list of Tools, and click WinFrotz.
· Change the Parameters to $BaseName.Z5.
· Click OK.

Now, if you select Tools from the menu bar, you'll see WinFrotzwith a keyboard
shortcut of Ctrl+2. Try it: open a valid Inform file in TextPad, compile it (Ctrl+1)
close the "Success" window and then press Ctrl+2 to open it in the interpreter.

Using TextPad with Inform

144 Informed Tips

The instructions here set up TextPad to compile and run a Version 5 game. Using
exactly the same processes, you could also configure Ctrl+2,3 to handle Version 8
games, and Ctrl+5,6 for Glulx. These are left as exercises for the reader.If you
wish to change the Ctrl+1 and Ctrl+2 keyboard shortcuts, follow these steps:
· Start TextPad.
· From the menu bar, select Configure > Preferences..., and click

Keyboard.
· From the Categories list, click Tools.
· Select the command and the current keys, use Remove and Assign

to set a new shortcut.
· Click OK.

Note on Glulx error messages
(I'm indebted to Petar Kanuritch for this information.) The Inform and Glulx
compilers can output their compilation results in three different styles:

· -E0: Archimedes-style error messages
 (for example: line 427: Error: No such constant as "top_object")

· -E1: Microsoft-style error messages
 (for example: C:\Glulx\libg610\Balances.inf(427): Error: No such constant as
"top_object")

· -E2: Macintosh MPW-style error messages
 (for example: File "C:\Glulx\libg610\Balances.inf"; Line 427 # Error: No such
constant as "top_object")

where -En is the switch which sets the related style of error message. For each
one, TextPad requires a different Regular Expression to match the output and
enable a jump to the correct line. These are:

· -E0 setting
 ^line \([0-9]+\):
 File=
 Line=1
 Column=

· -E1 setting
 ^\([^(]+\)(\([0-9]+\)):
 File=1
 Line=2
 Column=

Roger Firth

145www.OnyxRing.com

· -E2 setting
 ^File "\([^(]+\)"; Line \([0-9]+\)
 File=1
 Line=2
 Column=

The default entered by TextPad in the "Regular Expression to match output:" box
is, happily, exactly the -E1 setting; even better, Inform defaults to -E1 style on a
PC, so it all works nicely without further ado. However, Glulx defaults to -E0, so
either (a) change TextPad's regular expression to the -E0 setting, or (b) include -E1
 in TextPad's setting for Parameters.

REPLAYing command scripts

146 Informed Tips

REPLAYing command scripts
A game's development process involves a great deal of highly-focused testing. As
you create each new room, object, NPC, verb and so on, you give it lots and lots of
exercise, both to confirm that it does what it's supposed to, and to ensure that it
doesn't fail in unusual circumstances. Doing this carefully as you go along is
common sense: it's much easier to thrash the hell out of some new code while you
can still clearly remember just how you intended it to behave.As the game grows, it
becomes harder and harder to check it thoroughly. Sure, it's still easy to test the
new stuff: the problem is regression testing, verifying that what you've just done
hasn't broken what you did yesterday, or last week, or last month...One excellent
way of minimizing the hassle is to create command scriptswhich you can replay
to ensure that the whole game still hangs together after each set of changes.
Inform includes the verbs RECORDING ON and RECORDING OFFwhich create a
script by capturing commands as you type them, and REPLAY which reruns (some
or all of) a game by reading commands from a script file. These verbs are
described in §7.1 of the Inform Designer's Manual (Edition 4/1).
RECORDING and REPLAY are available only when debugging is enabled, which
isn't normally a problem while you're developing: Strict mode (and thence Debug
mode) is the default compiler setting. However, when you release a game to beta
testers, as a competition entry, or simply for general enjoyment, you'll want to
turn off Debug mode -- by compiling with the -~S flag -- in order to prevent
unscrupulous cheating. This means that these verbs now don't work; a bit
annoying, since you'd really like to REPLAY your regression tests in regular
mode as well as in Debug mode.
Here's the very simple way to make RECORDING and (especially) REPLAY
available at all times. In addition, it also implements ! as a comment verb, so that
you can embed remarks in your script files to remind yourself of what's being
tested. Just add this code to the end of your game, after the Include "Grammar"; line:

#Ifndef DEBUG;

Global xcommsdir;

[CommandsOnSub;

 @output_stream 4; xcommsdir = 1; "[Command recording on.]";

];

[CommandsOffSub;

 if (xcommsdir == 1) @output_stream -4;

 xcommsdir = 0; "[Command recording off.]";

];

[CommandsReadSub;

Roger Firth

147www.OnyxRing.com

 @input_stream 1; xcommsdir = 2; "[Replaying commands.]";

];

Verb meta 'recording'

 * -> CommandsOn

 * 'on' -> CommandsOn

 * 'off' -> CommandsOff;

Verb meta 'replay'

 * -> CommandsRead;

#Endif;

[CommentSub;];

Verb meta '!'

 * -> Comment

 * topic -> Comment;

In fact, you might find it convenient to place the code in a file Replay.hwhich you can
then easily Include in all of your games. Finally, by way of example, here's a
script file which exercises my example game "Cloak of Darkness":

! Command script to exercise "Cloak of Darkness" (Cloak.inf)

!

! NORTH goes nowhere

NORTH

!

! SOUTH is dark, and you need to come straight out again

SOUTH

NORTH

!

! Inspect your possessions

EXAMINE ME

INV

EXAMINE CLOAK

TAKE OFF CLOAK

DROP IT

!

! Investigate the Cloakroom

WEST

EXAMINE HOOK

TAKE IT

REPLAYing command scripts

148 Informed Tips

HANG CLOAK ON HOOK

TAKE CLOAK

HANG IT ON HOOK

EXAMINE HOOK

EAST

!

! Now OK to enter the Bar

SOUTH

TAKE MESSAGE

READ MESSAGE

Jim Fisher

149www.OnyxRing.com

Using the "system_file" and "replace" Directives In the Same Source File

here is an obscurity that presents itself when using both the replace
and system_file directives in the same file.

First, to bring this article into context, let me describe briefly what
they each do:

The system_file directive tells the compiler that the following routines, contained in
the current source file, can be overridden via the replace directive. (It actually does
more, but this is the behavior that is relevant)

The replace directive, generally called before the inclusion of the system_file, is
used to indicate that certain routines are to be replaced. Specifically, when the
replace directive is used to specify a routine name, instances of that routine,
which occur under the scope of the system_file directive, are ignored. This way a
new version, specified in a non-system file can be used instead.

The problem-behavior is that a file, which 1) specifies a function to be replaced, 2)
implements a new version of the function, and 3) is designated as a system_file,
has just specified its own implementation of the replaced function to be ignored as
well. Compiling this file will result in an error message similar to:

 testgame.inf(62): Error: There is no action routine called "ScoreSub"

For personal library extensions in particular, the need to replace standard library
routines and provide new routines that can be replaced as well is common. What
we seem to need, in cases like this is to specify some routines as replaceable and
other routines as not replaceable.

The solution is rooted in the fact that the name of the system_file directive is
potentially misleading since it seems to imply an entire file will be treated as a
system file. Actually, this is not true. The manner in which the Inform compiler
handles files designated as "system files" begins only when the directive is
encountered and stops at the end of the file. This enables us to move the
system_file directive down in our source file. The routines specified after the

Using SYSTEM_FILE & REPLACE in the Same Source

150 Informed Tips

system_file directive will be able to be replaced by games implementing the file,
while the routines above the system_file directive will be compiled without the
system_file qualifier and can therefore be used as replacements to library routines.

The following code snip demonstrates:

 replace ScoreSub;

 [ScoreSub;
 !...personal implementation of ScoreSub
];

 system_file;

 !...other code eligible to be replaced later goes here...

An Inform Developer's Guide

151www.OnyxRing.com

Part H
IF Theory

An Inform Developer's Guide

152 IF Theory

Jim Fisher

153www.OnyxRing.com

NPC Conversations: Ask/Tell Theory

1. Introduction

In the wake of such ground breaking games as "Galatia," "Photopia," and "Best of
Three," NPC conversations have become all the rage. Although there are
numerous ways to implement conversations (Emily Short identifies at least seven
on her NPC Characterization page) the two dominant forms seem to boil down to
conversation menus, and the age-old classic ASK/TELL.

As a developer I have always preferred the ASK/Tell system and most of the
implementation of the ORLibrary has been based upon expanding this paradigm.
This article, in fact, describes four different models for Ask/Tell implementation,
details what purposes they serve in a story, and parallels their use in real life. It
is also worth mentioning that, quite by coincidence, one of these models of the
Ask/Tell theory lends itself particularly well to a menu interface.

This is an article on the theory of Ask/Tell, and I am attempting to keep away
from platform specifics. For this reason, although library modules might be
mentioned in passing, no code or implementation will be given here. For those
who want more, however, this game is accompanied by a sample one-room
conversation game, written in Inform, which bears some meager resemblance to
both "Best of Three" and "Galatea." The code for this game, named "Medusa,"
will compile to both the Z-Machine and GLULX Native platforms. It leverages the
ORLibrary framework, and can be found here:

http://www.onyxring.com/downloads/ORLib%20Examples/medusa.inf

A compiled version of the game (compiled to .Z5 format because it is more
common right now than GLULX) can also be found here:

http://www.onyxring.com/downloads/ORLib%20Examples/medusa.z5

Additionally, to aid in understanding, a conversation map has been created and
can be downloaded from the following URL:

http://www.onyxring.com/downloads/ORLib%20Examples/medusa%20conversatio
.jpg

NPC Conversations: Ask/Tell Theory

154 IF Theory

For additional implementation information I would suggest the Advanced NPCs
articles "Converstation and Learning" available from:

http://www.onyxring.com/InformGuide.aspx?article=20

2 Theory of the Ask/Tell Paradigm

How do we, as people, choose what we are going to say to another person? For
the purposes of this article I will site four different forms of the human
conversation model and relate these to topic based conversations. It is important to
realize that each of these four forms of conversation is used in life to serve
different needs just as each of these forms of conversation is used in a game to
serve different needs.

2.1 The Librarian

The vast majority of IF games use this model. It is a response-only model where
the NPC will respond to the player only if spoken to but otherwise does not
initiate conversation. In life, this is a model we see in service staff, such as a
librarian who does her duties and answers questions but otherwise minds her own
business. The advantage of this model is that it is fairly easy to implement. This
model has the disadvantage of only being player driven. Creative writing can
temper the effect to some degree, but an NPC that simply answers questions isn't
really much of a conversationalist.

2.2 The Rambling Idiot

In life, this conversation model is most often used by people who have just met.
Particularly with strangers of whom nothing is known, there is little to do in a
conversation than to make some random generic statement such as "How about
them Yankees?" or "Nice weather we've been having." In a perfect world these little
generic bits of conversation will lead to a more personal level of discussion ("The
Yankees haven't played this bad since my freshman year of college." Or "Yes, this
is great golfing weather!") but until the other person has "bitten," we are just
fishing for a conversation.

In IF, the advantage of this model is that NPCs can initiate conversation on their
own and do not have to wait for the player to address them. However, if used alone

Jim Fisher

155www.OnyxRing.com

this model has the disadvantage of not "flowing" from one topic to another. Normal
conversation tends to progress in a chain of related subjects ("You followed the
Yankees in college? What school did you go to?" or "You like to golf? So does my
brother."). Without this relation between topics, the randomness of conversational
blurbs makes people (or NPCs) appear to ramble as though intoxicated. This could
be exactly what the developer is looking for in a character, but for a "normal"
NPC, this model alone leaves something to be desired.

2.3 The Lecturing Professor

In life, we use this third form of conversation when we have something specific to
say. A lecturer in a class room, for example, has specific points that must be made.
As the lecture progresses, the points are made one-by-one until the lecture is
concluded. It is possible that the students will keep quiet and the lecture will occur
exactly as written on the lecturer's note cards. It is equally possible that members
of the audience will ask questions.

When a lecturer answers a question, it can possibly be about related information
that would not otherwise have been covered in the lecture. The question could
also cover lecture material prematurely in which case those points need not be
made again as the lecture continues.

In IF, this third model is ideal for ensuring that necessary information gets
conveyed to the player. It is perhaps the most useful technique for writing NPC
conversation "scenes" in a story since it conveys the appropriate information, yet
allows the player to be as interactive (or not) as he/she desires.

One small disadvantage of this model is that the technique isn't truly "drivable" by
the player. That is, there is a predetermined outcome that will come to pass
regardless of what the player does. This is most likely what is desired in an IF
story anyway, however this model simply doesn't work well for "conversation"
games with multiple endings and "decision trees." For art to more closely imitate
life, another model is needed...

2.4 The Conversationalist

This final conversation model is the logical continuation of the "Rambling Idiot"
model discussed previously. In life, when we communicate with other people, we
key into what is being said and keep a running pool of things to Ask/Tell which

NPC Conversations: Ask/Tell Theory

156 IF Theory

are related to the conversation. Each statement can have several related topics
which, in turn, have their own related topics. Together, these weave chains of
interweaving topics (or a "Topic Web") which the player can navigate and be
prompted with reasonable, natural statements/questions from the NPC. As an
example, let's continue with one of the conversation statements covered
previously:

 "You like to golf? So does my brother."

An NPC can be programmed to respond to this statement with a number of related
statements, each response having its own set of related topics:

 "Well, miniature golf. I worked at
 'Golf World' after high school."

or

 "Sure I like golf, but not as much as I
 do water skiing. I do that every
 weekend."

or

 "Not my brother, he hates golf with a
 passion. He got hit in the head with a
 golf ball as a child."

or

Jim Fisher

157www.OnyxRing.com

 "I think I know your brother. Isn't
 he on the debate team?"

Obviously the advantage to this system is that it allows for complex conversations
seen in games such as "Best of Three" that can be driven equally by the NPC and
the PC together. As an additional advantage, the concept of related topics is
particularly well suited to support a menu. The menu, in turn addresses a
disadvantage with the Ask/Tell paradigm as a whole: the difficulty of leading the
player in the appropriate direction.

By its very nature, the Ask/Tell paradigm doesn't limit what the player can try to
say. This openness of Ask/Tell is both a positive and a negative. It gives the
player freedom since there need be no rhyme or reason to what is said to an NPC.
If the player chooses, he can play the "rambling idiot" all he wants, but most
players will look for clues when trying to determine what to say next. Without a
menu, strong hints need to be made. One way to accomplish this would be through
protagonist thoughts, but this technique grows more difficult as the number of
conversation branches increases. For the four options above, several lines of text
must be added:

 "You like to golf? So does my brother."

 You begin to tell about your tenure at
 "Golf World" but hesitate at the
 mention of her brother whom you know from
 debate. He always reminded you of your own
 brother who, oddly enough, hated golf. You
 two always had a great time skiing though.

As with any Ask/Tell system, this puts a fair burden on the shoulders of the author
to make adequate suggestions about what the player might say next. Hopefully,
with a bit of luck the player will read the above and consider one or more of the
following:

 >Tell girl about golf world
 >Tell girl about brother
 >Ask girl about brother
 >Tell girl about skiing

NPC Conversations: Ask/Tell Theory

158 IF Theory

Use of a menu system lightens this burden somewhat for both the author and
player. This intertwining of menus and Ask/Tell has an additional advantage.
Unlike non-Ask/Tell based menu systems, the player is not bound to choose one of
these menu items. A menu used in conjunction with Ask/Tell can be exited and the
player can "change the subject" by choosing another, non-related topic to Ask or
Tell in the conventional manner.

The ease of a menu combined with the power of the command. Now that's
flexibility!

3 Implementation

As I said up front, this article is about the theory behind Ask/Tell. There will be
no code given here that describes implementation. Still, it would be irresponsible
of me to simply end the article without some advice on where to go from here.

As a matter of personal preference, I am a big subscriber to the philosophy of
reusable code. Most of the work that I do in this area I package into reusable
modules and publish it in the ORLibrary. The sample, open source game produced
for this article leverages the library and primarily demonstrates the fourth model
discussed ("The Conversationalist") with a combined menu system. What follows is
a list of pertinent ORLibrary modules that can be used to implement the models
covered in this article:

3.1 The Librarian

ORKnowledgeTopic - This is the ORLibrary basis for all information used in the
Ask/Tell paradigm as a whole.

ORNPC_AskTellLearn - NPCs derived from this class are given the ability to
answer ASKed questions to which they know the answer.

3.2 The Rambling Idiot

ORNPC_Converse - This class instills NPCs with the ability to pick random
subjects and TELL them to the player or another NPC.

Jim Fisher

159www.OnyxRing.com

3.3 The Lecturing Professor

ORKnowledgeScript - a derivation of the ORKnowledgeTopic class. This topic will
interrupt the "Rambling Idiot" methodology and force the NPC to iterate through a
list of topics (skipping topics that have already been talked about).

3.4 The Conversationalist

OROptionList - A class to support lists. This is not really an NPC component class,
but NPCs can be derived from this to give them a "conversation pool" to retain
topics for ASKing or TELLing.

ORKnowledgeWeb - a derivation of the ORKnowledgeTopic class. This object
exposes a list of related topics that will be added to a characters "conversation
pool" when told.

