
1 1

The road to brevity is via solecism and through imprecision
– refer to the Inform Designer’s Manual for the definitive story.

•• Library objects •••••••••••••••••••••
compass

A container object holding the twelve direction objects
d_obj e_obj in_obj n_obj ne_obj nw_obj out_obj
s_obj se_obj sw_obj u_obj w_obj.

LibraryMessages
If defined (between Includes of Parser and VerbLib),
changes standard library messages:
Object LibraryMessages

with before [;
action: "string";
action: "string";
action: switch (lm_n) {

value: "string";
value: "string",(a) lm_o,".";
...
}

...
];

selfobj
The default player object. Avoid: use instead the player
variable, which usually refers to selfobj.

thedark
A pseudo-room which becomes the location when there
is no light (although the player object is not moved there).

•• Library constants •••••••••••••••••••
In addition to the standard constants true (1), false (0) and
nothing (0), the Library defines NULL (–1) for an action,
property or pronoun whose current value is undefined.

•• User-defined constants ••••••••••••••
Some constants control features rather than represent values.
AMUSING_PROVIDED

Activates the Amusing entry_point.
DEATH_MENTION_UNDO

Offers “UNDO the last move” when the game is over.
DEBUG

Activates the debug commands.
Headline = "string"

Mandatory: the game style, copyright information, etc.
MANUAL_PRONOUNS

Pronouns reflect only objects mentioned by the player.
MAX_CARRIED = expr

Maximum number of direct possessions that the player
can carry (default 100).

MAX_SCORE = expr
Maximum game score (default 0).

MAX_TIMERS = expr
Maximum number of active timers/daemons (default 32).

NO_PLACES
The “OBJECTS” and “PLACES” verbs are not allowed.

NUMBER_TASKS = expr
Number of scored tasks to be performed (default 1).

OBJECT_SCORE = expr
For taking a scored object for the first time (default 4).

ROOM_SCORE = expr
For visiting a scored room for the first time (default 5).

SACK_OBJECT = object
A container object where the game places held objects.

Story = "string"
Mandatory: the name of the story.

TASKS_PROVIDED
Activates the task scoring system.

USE_MODULES
Activates linking with pre-compiled library modules.

WITHOUT_DIRECTIONS
De-activates standard compass directions (bar “IN” and
“OUT”). Place alternative directions in the compass.

•• Library variables •••••••••••••••••••
action

The current action.
actor

The target of an instruction: the player, or an NPC.
deadflag

Normally 0: 1 indicates a regular death, 2 indicates that
the player has won, 3 or more denotes a user-defined end.

inventory_stage
Used by invent and list_together properties.

keep_silent
Normally false; true makes most group 2 actions silent.

location
The player’s current room; unless that’s dark, when it
contains thedark, real_location contains the room.

notify_mode
Normally true: false remains silent when score changes.

noun
The primary focus object for the current action.

player
The object acting on behalf of the human player.

real_location
The player’s current room when in the dark.

score
The current score.

second
The secondary focus object for the current action.

self
The object which received a message .
(Note: a run-time variable, not a compile-time constant.)

sender
The object which sent a message (or nothing).

task_scores
A byte array holding scores for the task scoring system.

the_time
The game’s clock, in minutes 0..1439 since midnight.

turns
The game’s turn counter.

wn
The input stream word number, counting from 1.

InfoLib
at your fingertips

A quick reference to the
Inform Library

Inform is copyright © 2002 by Graham Nelson
http://www.gnelson.demon.co.uk/

This guide is copyright © 2002 by Roger Firth
http://www.firthworks.com/roger/

Version 1.5 (March 2002)

2 2

•• Library routines ••••••••••••••••••••
Achieved(expr)

A scored task has been achieved.
AfterRoutines()

In a group 2 action, controls output of ‘after’ messages.
AllowPushDir()

An object can be pushed from one location to another.
Banner()

Prints the game banner.
ChangePlayer(object,flag)

Player assumes the persona of the object. If the optional
flag is true, room descriptions include “(as object)”.

CommonAncestor(object1,object2)
Returns the nearest object which a parental relationship to
both objects, or nothing.

DictionaryLookup(byte_array,length)
Returns address of word in dictionary, or 0 if not found.

DrawStatusLine()
Refreshes the status line.

GetGNAOfObject(object)
Returns gender-number-animation 0..11 of the object.

HasLightSource(object)
Returns true if the object has light.

IndirectlyContains(parent_object,object)
Returns true if object is currently a child or grand-child
or great-grand-child... of the parent_object.

IsSeeThrough(object)
Returns true if light can pass through the object.

Locale(object,"string1","string2")
Describes the contents of object, and returns their
number. After objects with own paragraphs, the rest are
listed preceded by string1 or string2.

LoopOverScope(routine,actor)
Calls routine(object) for each object in scope. If the
optional actor is supplied, that defines the scope.

MoveFloatingObjects()
Adjusts positions of game’s found_in objects.

NextWord()
Returns the next dictionary word in the input stream,
incrementing wn by one. Returns false if the word is not
in the dictionary, or if the input stream is exhausted.

NextWordStopped()
Returns the next dictionary word in the input stream,
incrementing wn by one. Returns false if the word is not
in the dictionary, –1 if the input stream is exhausted.

NounDomain(object1,object2,type)
Performs object parsing; see also ParseToken().

ObjectIsUntouchable(object,flag)
Tests if there is a barrier – a container object which is not
open – between player and object. Unless the optional
flag is true, outputs “You can't because ... is in the way”.
Returns true is a barrier is found, otherwise false.

OffersLight(object)
Returns true if the object offers light.

ParseToken(type,value)
Performs general parsing; see also NounDomain().

PlaceInScope(object)
Used in an add_to_scope property or scope= token to
put the object into scope for the parser.

PlayerTo(object,flag)
Moves the player to object. Prints its description unless
optional flag is 1 (no description) or 2 (as if walked in).

PrintOrRun(object,property,flag)
If object.property is a string, output it (followed by a
newline unless optional flag is true), and return true. If
it’s a routine, run it and return what the routine returns.

PronounNotice(object)
Associates an appropriate pronoun with the object.

PronounValue('pronoun')
Returns the object to which 'it' (or 'him', 'her',
'them') currently refers, or nothing.

ScopeWithin(object)
Used in an add_to_scope property or scope= token to
put the contents of the object in scope for the parser.

SetPronoun('pronoun',object)
Defines the object to which a given pronoun refers.

SetTime(expr1,expr2)
Sets the_time to expr1 (in mins 0..1439 since midnight),
running at expr2 (+ve: expr2 minutes pass each turn;
–ve: -expr2 turns take one minute; zero: time stands still).

StartDaemon(object)
Starts the object’s daemon.

StartTimer(object,expr)
Starts the object’s timer, initialising its time_left to
expr. The object’s time_out property will be called after
that number of turns have elapsed.

StopDaemon(object)
Stops the object’s daemon.

StopTimer(object)
Stops the object’s timer.

TestScope(object,actor)
Returns true if the object is in scope, otherwise false. If
the optional actor is supplied, that defines the scope.

TryNumber(expr)
Parses word expr in the input stream as a number,
recognising decimals, also English words one..twenty.
Returns the number 1..10000, or -1000 if the parse fails.

UnsignedCompare(expr1,expr2)
Returns –1 if expr1 is less than expr2, 0 if expr1 equals
expr2, and 1 if expr1 is greater than expr2. Both
expressions are unsigned, in the range 0..65535.

WordAddress(expr)
Returns a byte array contains the raw text of word expr in
the input stream.

WordInProperty(word,object,property)
Returns true if the dictionary word is listed in the
property values for the object.

WordLength(expr)
Returns the length of word expr in the input stream.

WriteListFrom(object,expr)
Outputs a list of object and its siblings, in the given style,
an expr formed by adding any of: ALWAYS_BIT,
CONCEAL_BIT, DEFART_BIT, ENGLISH_BIT, FULLINV_BIT,
INDENT_BIT, ISARE_BIT, NEWLINE_BIT, PARTINV_BIT,
RECURSE_BIT, TERSE_BIT, WORKFLAG_BIT.

YesOrNo()
Returns true if the player types “YES”, false for “NO”.

ZRegion(arg)
Returns the type of its arg : 3 for a string address, 2 for a
routine address, 1 for an object number, or 0 otherwise.

3 3

•• Object properties •••••••••••••••••••
Where the value of a property can be a routine, several
formats are possible (but remember: embedded “]” returns
false, standalone “]” returns true,):
property [; statement; statement; ...]

property [; return routine();]

property [; routine();]

property routine

“⊕” marks an additive property: such properties in an
Object definition supplement, rather than supersede, the
same properties in a Class definition (and are dealt with
first).
add_to_scope

For an object: additional objects which follow it in and out
of scope. The value can be: a space-separated list of
objects, or a routine which invokes PlaceInScope() or
ScopeWithin() to specify objects.

after ⊕
For an object: receives every action and fake_action
for which this is the noun.
For a room: receives every action which occurs here.
The value is a routine of structure similar to a switch
statement, having cases for the appropriate actions (and
an optional default as well); it is invoked after the action
has happened, but before the player has been informed.
The routine should return: false to continue, telling the
player what has happened, or true to stop processing the
action and produce no further output.

article
For an object: the object’s indefinite article – the default is
automatically “a”, “an” or “some”. The value can be: a
string, or a routine which outputs a string.

articles
For a non-English object: its definite and indefinite
articles. The value is an array of strings.

before ⊕
For an object: receives every action and fake_action
for which this is the noun.
For a room: receives every action which occurs here.
The value is a routine invoked before the action has
happened. See after.

cant_go
For a room: the message when the player attempts an
impossible exit. The value can be: a string, or a routine
which outputs a string.

capacity
For a container or supporter object: the number of
objects which can be placed in or on it – the default is 100.
For the player: the number which can be carried –
selfobj has an initial capacity of MAX_CARRIED.
The value can be: a number, or a routine which returns a
number.

d_to
For a room: a possible exit. The value can be:
• false (the default): not an exit;
• a string: output to explain why this is not an exit;
• a room: the exit leads to this room;
• a door object: the exit leads through this door;
• a routine which should return: false, a string, a room, a
door object, or true to signify ‘not an exit’ and produce
no further output.

daemon
The value is a routine which can be activated by
StartDaemon(object) and which then runs once each
turn until deactivated by StopDaemon(object).

describe ⊕
For an object: called before the object’s description is
output. For a room: called before the room’s (long)
description is output.
The value is a routine which should return: false to
continue, outputting the usual description, or true to stop
processing and produce no further output.

description
For an object: its description (output by Examine).
For a room: its long description (output by Look).
The value can be: a string, or a routine which outputs a
string.

door_dir
For a compass object (d_obj, e_obj, ...): the direction in
which an attempt to move to this object actually leads.
For a door object: the direction in which this door leads.
The value can be: a directional property (d_to, e_to, ...),
or a routine which returns such a property.

door_to
For a door object: where it leads. The value can be:
• false (the default): leads nowhere;
• a string: output to explain why door leads nowhere;
• a room: the door leads to this room;
• a routine which should return: false, a string, a room,

or true to signify ‘leads nowhere’ without producing
any output.

e_to
See d_to.

each_turn ⊕
Invoked at the end of each turn (after all appropriate
daemons and timers) whenever the object is in scope. The
value can be: a string, or a routine.

found_in
For an object: the rooms where this object can be found,
unless it has the absent attribute. The value can be:
• a space-separated list of rooms (where this object can be

found) or objects (whose locations are tracked by this
object);

• a routine which should return: true if this object can be
found in the current location, otherwise false.

grammar
For an animate or talkable object: the value is a
routine called when the parser knows that this object is
being addressed, but has yet to test the grammar. The
routine should return: false to continue, true to indicate
that the routine has parsed the entire command, or a
dictionary word ('word ' or –'word ').

in_to
See d_to.

initial
For an object: its description before being picked up.
For a room: its description when the player enters the
room.
The value can be: a string, or a routine which outputs a
string.

inside_description
For an enterable object: its description, output as part of
the room description when the player is inside the object.
The value can be: a string, or a routine which outputs a
string.

4 4

invent
For an object: the value is a routine for outputting the
object’s inventory listing, which is called twice. On the first
call nothing has been output; inventory_stage has the
value 1, and the routine should return: false to continue
or true to stop processing and produce no further output.
On the second call the object’s indefinite article and short
name have been output, but not any subsidiary
information; inventory_stage has the value 2, and the
routine should return: false to continue or true to stop
processing and produce no further output.

life ⊕
For an animate object: receives person-to-person
actions (Answer Ask Attack Give Kiss Order Show
Tell ThrowAt WakeOther) for which this is the noun. The
value is a routine of structure similar to a switch
statement, having cases for the appropriate actions (and
an optional default as well). The routine should return:
false to continue, telling the player what has happened,
or true to stop processing the action and produce no
further output.

list_together
For an object: groups related objects when outputting an
inventory or room contents list. The value can be:
• a number: all objects having this value are grouped;
• a string: all objects having this value are grouped as a

count of the string;
• a routine which is called twice. On the first call nothing

has been output; inventory_stage has the value 1, and
the routine should return: false to continue, or true to
stop processing and produce no further output. On the
second call the list has been output; inventory_stage
has the value 2, and there is no test on the return value.

n_to
See d_to.

name ⊕
Defines a space-separated list of words which are added to
the Inform dictionary. Each word can be supplied in
apostrophes '...' or quotes "..."; in all other cases only
words in apostrophes update the dictionary.
For an object: identifies this object.
For a room: outputs “does not need to be referred to”.

ne_to
See d_to.

number
For an object or room: the value is a general-purpose
variable freely available for use by the program. A player
object must provide (but not use) this variable.

nw_to
See d_to.

orders
For an animate or talkable object: the value is a
routine called to carry out the player’s orders. The routine
should return: false to continue, or true to stop
processing the action and produce no further output.

out_to
See d_to.

parse_name
For an object: the value is a routine called to parse an
object’s name. The routine should return: zero if the text
makes no sense, –1 to cause the parser to resume, or the
positive number of words matched.

plural
For an object: its plural form, when in the presence of
others like it. The value can be: a string, or a routine
which outputs a string.

react_after
For an object: detects nearby actions – those which take
place when this object is in scope. The value is a routine
invoked after the action has happened, but before the
player has been informed. See after.

react_before
For an object: detects nearby actions – those which take
place when this object is in scope. The value is a routine
invoked before the action has happened. See after.

s_to
se_to

See d_to.
short_name

For an object: an alternative or extended short name. The
value can be: a string, or a routine which outputs a string.
The routine should return: false to continue by
outputting the object’s ‘real’ short name (from the head of
the object definition), or true to stop processing the action
and produce no further output.

short_name_indef
For a non_English object: the short name when preceded
by an indefinite object. The value can be: a string, or a
routine which outputs a string.

sw_to
See d_to.

time_left
For a timer object: the value is a variable to hold the
number of turns left until this object’s timer – activated
and initialised by StartTimer(object) – counts down to
zero and invokes the object’s time_out property.

time_out
For a timer object: the value is a routine which is run
when the object’s time_left value – initialised by
StartTimer(object), and not in the meantime cancelled
by StopTimer(object) – counts down to zero.

u_to
w_to

See d_to.
when_closed
when_open

For a container or door object: used when including this
object in a room’s long description. The value can be: a
string, or a routine which outputs a string.

when_off
when_on

For a switchable object: used when including this object
in a room’s long description. The value can be: a string,
or a routine which outputs a string.

with_key
For a lockable object: the ‘key’ object needed to lock
and unlock the object, or nothing if no key fits.

5 5

•• Object attributes •••••••••••••••••••
absent

For a ‘floating’ object (one with a found_in property,
which can appear in many rooms): is no longer there.

animate
For an object: is a living creature.

clothing
For an object: can be worn.

concealed
For an object: is present but hidden from view.

container
For an object: other objects can be put in (but not on) it.

door
For an object: is a door or bridge between rooms.

edible
For an object: can be eaten.

enterable
For an object: can be entered.

female
For an animate object: is female.

general
For an object or room: a general-purpose flag.

light
For an object or room: is giving off light.

lockable
For an object: can be locked; see the with_key property.

locked
For an object: can’t be opened.

male
For an animate object: is male.

moved
For an object: is being, or has been, taken by the player.

neuter
For an animate object: is neither male nor female.

on
For a switchable object: is switched on.

open
For a container or door object: is open.

openable
For a container or door object: can be opened.

pluralname
For an object: is plural.

proper
For an object: the short name is a proper noun, therefore
not to be preceded by “The” or “the”.

scenery
For an object: can’t be taken; is not listed in a room
description.

scored
For an object: awards OBJECT_SCORE points when taken
for the first time. For a room: awards ROOM_SCORE points
when visited for the first time.

static
For an object: can’t be taken.

supporter
For an object: other objects can be put on (but not in) it.

switchable
For an object: can be switched off or on.

talkable
For an object: can be addressed in “object, do this” style.

transparent
For a container object: objects inside it are visible.

visited
For a room: is being, or has been, visited by the player.

workflag
Temporary internal flag, also available to the program.

worn
For a clothing object: is being worn.

•• Optional entry points ••••••••••••••••
These routines, if you supply them, are called when shown.
AfterLife()

The player has died. Setting deadflag to 0 resurrects her.
AfterPrompt()

The “>” prompt has been output.
Amusing()

The player has won and AMUSING_PROVIDED is defined.
BeforeParsing()

The parser has input some text, set up the buffer and parse
tables, and initialised wn to 1, but done nothing else.

ChooseObjects(object,flag)
Parser has found “ALL” or an ambiguous noun phrase and
decided that object should be excluded (flag is 0), or
included (flag is 1). The routine should return: 0 to let
this stand, 1 to force inclusion, or 2 to force exclusion. If
flag is 2, the parser is undecided, and the routine should
return an appropriate score 0..9.

DarkToDark()
The player has moved from one dark room to another.

DeathMessage()
The player has died and deadflag is 3 or more.

GamePostRoutine()
Called after all actions.

GamePreRoutine()
Called before all actions.

Initialise()
Mandatory; note British spelling: called at start. Must
set location; can return 2 to suppress game banner.

InScope()
Called during parsing.

LookRoutine()
Called at the end of every Look description.

NewRoom()
Called when room changes, before description is output.

ParseNoun(object)
Called to parse the object’s name.

ParseNumber(byte_array,length)
Called to parse a number.

ParserError(number)
Called to handle an error.

PrintRank()
Completes the output of the score.

PrintTaskName(number)
Prints the name of the task.

PrintVerb(addr)
Called when an unusual verb is printed.

TimePasses()
Called after every turn.

UnknownVerb()
Called when an unusual verb is encountered.

6 6

•• Group 1 actions ••••••••••••••••••••
Group 1 actions support the ‘meta’ verbs and debug tools.

•• Group 2 actions ••••••••••••••••••••
Group 2 actions usually work, given the right circumstances.
These are the standard actions and their triggering verbs.

•• Group 3 actions ••••••••••••••••••••
Group 3 actions are by default stubs which output a message
and stop at the ‘before’ stage (so there is no ‘after’ stage).

•• Fake actions ••••••••••••••••••••••

Close “CLOSE [UP]”, “COVER [UP]”, “SHUT [UP]”
Disrobe “DISROBE”, “DOFF”, “REMOVE”, “SHED”,

“TAKE OFF”
Drop “DISCARD”, “DROP”, “PUT DOWN”, “THROW”
Eat “EAT”
Empty “EMPTY [OUT]”
EmptyT “EMPTY IN|INTO|ON|ONTO|TO”
Enter “CROSS”, “ENTER”, “GET IN|INTO|ON|ONTO”,

“GO IN|INSIDE|INTO|THROUGH”,
“LEAVE IN|INSIDE|INTO|THROUGH”,
“LIE IN|INSIDE|ON”, “LIE ON TOP OF”,
“RUN IN|INSIDE|INTO|THROUGH”,
“SIT IN|INSIDE|ON”, “SIT ON TOP OF”,
“STAND ON”, “WALK IN|INSIDE|INTO|THROUGH”

Examine “CHECK,” “DESCRIBE”, “EXAMINE”, “L[OOK] AT”,
“READ”, “WATCH”, “X”

Exit “EXIT”, “GET OFF|OUT|UP”, “LEAVE”,
“OUT[SIDE]”, “STAND [UP]”

GetOff “GET OFF”
Give “FEED [TO]”, “GIVE [TO]”, “OFFER [TO]”,

“PAY [TO]”
Go “GO”, “LEAVE”, “RUN”, “WALK”
GoIn “CROSS”, “ENTER”, “IN[SIDE]”
Insert “DISCARD IN|INTO”, “DROP DOWN|IN|INTO”,

“INSERT IN|INTO”, “PUT IN|INSIDE|INTO”,
“THROW DOWN|IN|INTO”

Inv “I[NV]”, “INVENTORY”, “TAKE INVENTORY”
InvTall “I[NV] TALL”, “INVENTORY TALL”
InvWide “I[NV] WIDE”, “INVENTORY WIDE”
Lock “LOCK WITH”
Look “L[OOK]”
Open “OPEN”, “UNCOVER”, “UNDO”, “UNWRAP”
PutOn “DISCARD ON|ONTO”, “DROP ON|ONTO”,

“PUT ON|ONTO”, “THROW ON|ONTO”
Remove “GET FROM”, “REMOVE FROM”, “TAKE FROM|OFF”
Search “L[OOK] IN|INSIDE|INTO|THROUGH”, “SEARCH”
Show “DISPLAY [TO]”, “PRESENT [TO]”, “SHOW [TO]”
SwitchOff “CLOSE OFF”, “SCREW OFF”, “SWITCH OFF”,

“TURN OFF”, “TWIST OFF”

SwitchOn “SCREW ON”, “SWITCH ON”, “TURN ON”,
“TWIST ON”

Take “CARRY”, “GET”, “HOLD”, “PEEL [OFF]”,
“PICK UP”, “REMOVE”, “TAKE”

Transfer “CLEAR TO”, “MOVE TO”, “PRESS TO”, “PUSH TO”,
“SHIFT TO”, “TRANSFER TO”

Unlock “OPEN WITH”, “UNDO WITH”, “UNLOCK WITH”
VagueGo “GO”, “LEAVE”, “RUN”, “WALK”
Wear “DON”, “PUT ON”, “WEAR”

Answer “ANSWER TO”, “SAY TO”, “SHOUT TO”, “SPEAK TO”
Ask “ASK ABOUT”
AskFor “ASK FOR”
Attack “ATTACK”, “BREAK”, “CRACK”, “DESTROY”,

“FIGHT”, “HIT”, “KILL”, “MURDER”, “PUNCH”,
“SMASH”, “THUMP”, “TORTURE”, “WRECK”

Blow “BLOW”
Burn “BURN [WITH]”, “LIGHT [WITH]”
Buy “BUY” “PURCHASE”
Climb “CLIMB [OVER|UP]”, “SCALE”
Consult “CONSULT ABOUT|ON”, “LOOK UP IN”,

“READ ABOUT IN”, “READ IN”
Cut “CHOP,” “CUT”, “PRUNE”, “SLICE”
Dig “DIG [WITH]”
Drink “DRINK”, “SIP”, “SWALLOW”
Fill “FILL”
Jump “HOP”, “JUMP”, “SKIP”
JumpOver “HOP OVER”, “JUMP OVER”, “SKIP OVER”
Kiss “EMBRACE”, “HUG”, “KISS”
Listen “HEAR”, “LISTEN [TO]”
LookUnder “LOOK UNDER”
Mild Various mild swearwords.
No “NO”
Pray “PRAY”
Pull “DRAG” “PULL”
Push “CLEAR”, “MOVE”, “PRESS”, “PUSH”, “SHIFT”
PushDir “CLEAR”, “MOVE”, “PRESS”, “PUSH”, “SHIFT”
Rub “CLEAN”, “DUST”, “POLISH”, “RUB”, “SCRUB”,

“SHINE”, “SWEEP”, “WIPE”
Set “ADJUST”, “SET”
SetTo “ADJUST TO”, “SET TO”

Sing “SING”
Sleep “NAP”, “SLEEP”
Smell “SMELL”, “SNIFF”
Sorry “SORRY”
Squeeze “SQUASH”, “SQUEEZE”
Strong Various strong swearwords.
Swim “DIVE”, “SWIM”
Swing “SWING [ON]”
Taste “TASTE”
Tell “TELL ABOUT”
Think “THINK”
ThrowAt “THROW AGAINST|AT|ON|ONTO”
Tie “ATTACH [TO]”, “FASTEN [TO]”, “FIX [TO]”,

“TIE [TO]”
Touch “FEEL,” “FONDLE”, “GROPE”, “TOUCH”
Turn “ROTATE”, “SCREW”, “TURN”, “TWIST”, “UNSCREW”
Wait “WAIT” “Z”
Wake “AWAKE[N]”, “WAKE [UP]”
WakeOther “AWAKE[N]”, “WAKE [UP]”
Wave “WAVE”
WaveHands “WAVE”
Yes “Y[ES]”

LetGo Generated by Remove.
ListMiscellany Outputs a range of inventory messages.
Miscellany Outputs a range of utility messages.
NotUnderstood Generated when the parser fails to

interpret some orders.
Order Receives things not handled by orders.
PluralFound Tells the parser that parse_name() has

identified a plural object.
Prompt Outputs the prompt, normally “>”.
Receive Generated by Insert and PutOn.
TheSame Generated when the parser can’t

distinguish between two objects.
ThrownAt Generated by ThrowAt.

