
1 1

The road to brevity is via imprecision and through solecism
– refer to the Inform Designer’s Manual for the definitive story.

•• Literals •••••••••••••••••••••••••••
A Z-code word literal uses sixteen bits (whereas a Glulx
word has thirty-two bits). A byte literal is always eight bits.
• Decimal: -32768 to 32767

Hexadecimal: $0 to $FFFF
Binary: $$0 to $$1111111111111111

• Action: ##Look
• Character: 'a'
• Dictionary word: 'aardvark' (up to nine characters

significant); use circumflex “^” to denote apostrophe.
Plural word: 'aardvarks//p'
Single-character word: "a" (name property only) or 'a//'

• String: "aardvark's adventure" (maximum around
4000 characters); can include special values including:

•• Names •••••••••••••••••••••••••••
The identifier of an Inform constant, variable, array,
class, object, property, attribute, routine or label.
Up to 32 characters: alphabetic (case not significant),
numeric and underscore, with the first character not a digit.

•• Expressions and Operators ••••••••••••
Use parentheses (...) to control the order of evaluation.
Arithmetic/logical expressions support these operators:

Conditional expressions return true (1) or false (0);
q may be a list of alternatives q1 or q2 or ... qN:

Boolean expressions return true (1) or false (0):

To return –1, 0 or 1 based on unsigned comparison:
UnsignedCompare(p,q)

To return true if object q is a child or grand-child or... of p:
IndirectlyContains(p,q)

To return a random number 1..N , or one from a list of
constant values:
random(N)
random(value,value, ... value)

•• Constants ••••••••••••••••••••••••
Named word values, unchanging at run-time, which are by
default initialised to zero:
Constant constant;
Constant constant = expr;

Standard constants are true (1), false (0) and nothing (0),
also NULL (–1).
To define a constant (unless it already exists):
Default constant expr;

•• Variables and Arrays ••••••••••••••••
Named word/byte values which can change at run-time and
are by default initialised to zero.
A global variable is a single word:
Global variable;
Global variable = expr;

A word array is a set of global words accessed using
array-->0, array-->1, ... array-->(N–1):
Array array ––> N;
Array array ––> expr1 expr2 ... exprN;
Array array ––> "string";

A table array is a set of global words accessed using
array-->1, array-->2, ... array-->N, with array-->0
initialised to N:
Array array table N;
Array array table expr1 expr2 ... exprN;
Array array table "string";

A byte array is a set of global bytes accessed using
array->0, array->1, ... array->(N–1):
Array array –> N;
Array array –> expr1 expr2 ... exprN;
Array array –> "string";

A string array is a set of global bytes accessed using
array->1, array->2, ... array->N, with array->0
initialised to N:
Array array string N;
Array array string expr1 expr2 ... exprN;
Array array string "string";

In all these cases, the characters of the initialising string are
unpacked to the individual word/byte elements of the array.
See also Objects (for property variables) and Routines (for
local variables).

Inform
in four minutes

A quick reference to the
Inform programming language

Inform is copyright © 2002 by Graham Nelson
http://www.gnelson.demon.co.uk/

This guide is copyright © 2002 by Roger Firth
http://www.firthworks.com/roger/

Version 1.3 (March 2002)

^ newline
~ quotes “"”
@@64 at sign “@”
@@92 backslash “\”
@@94 circumflex “^”
@@126 tilde “~”
@`a a with a grave accent “à”, et al
@LL pound sign “£”, et al
@00 ... @31 low string 0..31

p + q addition
p – q subtraction
p * q multiplication
p / q integer division
p % q remainder
p++ increments p , evaluates to original value
++p increments p , evaluates to new value
p–– decrements p , evaluates to original value
––p decrements p , evaluates to new value
p & q bitwise AND
p | q bitwise OR
~p bitwise NOT (inversion)

p == q p is equal to q
p ~= q p isn’t equal to q
p > q p is greater than q
p < q p is less than q
p >= q p is greater than or equal to q
p <= q p is less than or equal to q
p ofclass q object p is of class q
p in q object p is a child of object q
p notin q object p isn’t a child of object q
p provides q object p provides property q
p has q object p has attribute q
p hasnt q object p hasn’t attribute q

p && q both p and q are true (non-zero)
p || q either p or q is true (non-zero)
~~p p is false (zero)

2 2

•• Classes and Objects •••••••••••••••••
To declare a class – a template for a family of objects –
where the optional (N) limits instances created at run-time:
Class class(N)

class class class ... class
has attr_def attr_def ... attr_def
with prop_def,

...
prop_def;

To declare an object; “Object” can instead be a class, the
remaining four header items are all optional, and arrows
(->, -> ->, ...) and parent_object are incompatible:
Object arrows object "ext_name" parent_object

class class class ... class
has attr_def attr_def ... attr_def
with prop_def,

...
prop_def;

The class, has and with (and also the rarely-used private)
segments are all optional, and can appear in any order.
To determine an object’s class as one of Class, Object,
Routine, String (or nothing):
metaclass(object)

has segment: Each attr_def is either of:
attribute
~attribute

To change attributes at run-time:
give object attr_def attr_def ... attr_def;

with/private segments: Each prop_def declares a variable
(or word array) and can take any of these forms (where a
value is an expression, a string or an embedded routine):
property
property value
property value value ... value

A property variable is addressed by object.property (or
within the object’s declaration as self.property) .
Multiple values create a property array; in this case
object.#property is the number of bytes occupied by the
array, the entries can be accessed using
object.&property-->0, object.&property-->1, ... , and
object.property refers to the value of the first entry.
A property variable inherited from an object’s class is
addressed by object.class::property; this gives the
original value prior to any changes within the object.

•• Manipulating the object tree ••••••••••
To change object relationships at run-time:
move object to parent_object;
remove object;

To return the parent of an object (or nothing):
parent(object)

To return the first child of an object (or nothing):
child(object)

To return the adjacent child of an object’s parent (or
nothing):
sibling(object)

To return the number of child objects directly below an
object:
children(object)

•• Message passing ••••••••••••••••••••
To a class:
class.remaining()
class.create()
class.destroy(object)
class.recreate(object)
class.copy(to_object,from_object)

To an object:
object.property(a1,a2, ... a7)

To a routine:
routine.call(a1,a2, ... a7)

To a string:
string.print()
string.print_to_array(array)

•• Statements ••••••••••••••••••••••••
Each statement is terminated by a semi-colon “;”.
A statement_block is a single statement or a series of
statements enclosed in braces {...}.
An exclamation “!” starts a comment – rest of line ignored.
A common statement is the assignment:
variable = expr;

There are two forms of multiple assignment:
variable = variable = ... = expr;

variable = expr, variable = expr, ... ;

•• Routines •••••••••••••••••••••••••
A routine can have up to 15 local variables: word values
which are private to the routine and which by default are set
to zero on each call. Recursion is permitted.
A standalone routine:
• has a name, by which it is called using routine(); can

also be called indirectly using
indirect(routine,a1,a2, ... a7)

• can take arguments, using routine(a1,a2, ... a7),
whose values initialise the equivalent local variables

• returns true at the final “]”
[routine

local_var local_var ... local_var;
statement;
statement;
...
statement;
];

A routine embedded as the value of an object property:
• has no name, and is called when the property is invoked;

can also be called explicitly using object.property()
• accepts arguments only when called explicitly
• returns false at the final “]”
property [

local_var local_var ... local_var;
statement;
statement;
...
statement;
]

Routines return a single value, when execution reaches the
final “]” or an explicit return statement:
return expr;

return;
rtrue;

rfalse;

To define a dummy standalone routine with N local variables
(unless it already exists):
Stub routine N;

3 3

•• Flow control •••••••••••••••••••••••
To execute statements if expr is true; optionally, to execute
other statements if expr is false:
if (expr)

statement_block

if (expr)
statement_block

else
statement_block

To execute statements depending on the value of expr:
switch (expr) {

value: statement; ... statement;
value: statement; ... statement;
...
default: statement; ... statement;
}

where each value can be given as:
constant
lo_constant to hi_constant
constant,constant, ... constant

•• Loop control •••••••••••••••••••••••
To execute statements while expr is true:
while (expr)

statement_block

To execute statements until expr is true:
do

statement_block
until (expr)

To execute statements while a variable changes:
for (set_var : loop_while_expr : update_var)

statement_block

To execute statements for all defined objects:
objectloop (variable)

statement_block

To execute statements for all objects selected by expr:
objectloop (expr_starting_with_variable)

statement_block

To jump out of the current innermost loop or switch:
break;

To immediately start the next iteration of the current loop:
continue;

•• Displaying information •••••••••••••••
To output a list of values:
print value,value, ... value;

To output a list of values followed by a newline, then return
true from the current routine:
print_ret value,value, ... value;

If the first (or only) value is a string, “print_ret” can be
omitted:
"string",value, ... value;

Each value can be an expression, a string or a rule.
An expression is output as a signed decimal value.
A string in quotes "..." is output as text.
A rule is one of:

To output a newline character:
new_line;

To output multiple spaces:
spaces expr;

To output text in a display box:
box "string" "string" ... "string";

To change from regular to fixed-pitch font:
font off;
...
font on;

To change the font attributes:
style bold; ! use one or more of these
style underline; !
style reverse; !
...
style roman;

•• Uncommon and deprecated statements••
To jump to a labelled statement:
jump label;
...
.label; statement;

To terminate the program:
quit;

To save and restore the program state:
save label;
...
restore label;

To output the Inform compiler version number:
inversion;

To accept data from the current input stream:
read text_array parse_array routine;

To assign to one of 32 ‘low string’ variables:
string N "string";

Lowstring string_var "string";
string N string_var;

(number) expr the expr in words
(char) expr the expr as a single character
(string) addr the string at the addr
(address) addr the dictionary word at the addr
(name) object the external (short) name of the object
(a) object the short name preceded by “a/an”
(the) object the short name preceded by “the”
(The) object the short name preceded by “The”
(routine) value the output when calling routine(value)

4 4

•• Verbs and Actions ••••••••••••••••••
To specify a new verb:
Verb 'verb' 'verb' ... 'verb'

* token token ... token –> action
* token token ... token –> action
...
* token token ... token –> action;

where instead “Verb” can be “Verb meta”, “action” can be
“action reverse”; tokens are optional and each is one of:

To add synonyms to an existing verb:
Verb 'verb' 'verb' ... = 'existing_verb';

To modify an existing verb:
Extend 'existing_verb' last

* token token ... token –> action
* token token ... token –> action
...
* token token ... token –> action;

where instead “Extend” can be “Extend only” and “last”
can be omitted, or changed to “first” or “replace”
To explicitly trigger a defined action (both noun and second
are optional, depending on the action):
<action noun second>;

To explicitly trigger a defined action, then return true from
the current routine:
<<action noun second>>;

•• Other useful directives •••••••••••••••
To include a directive within a routine definition [...],
insert a hash “#” as its first character.
To conditionally compile:
Ifdef name; ! use any one of these
Ifndef name; !
Iftrue expr; !
Iffalse expr; !

...
Ifnot;

...
Endif;

To display a compile-time message:
Message "string";

To include the contents of a file, searching the Library path:
Include "source_file";

To include the contents of a file in the same location as the
current file:
Include ">source_file";

To specify that a library routine is to be replaced:
Replace routine;

To set the game’s release number (default is 1), serial
number (default is today’s yymmdd) and status line format
(default is score):
Release expr;
Serial "yymmdd";
Statusline score;
Statusline time;

To declare a new attribute common to all objects:
Attribute attribute;

To declare a new property common to all objects:
Property property;
Property property expr;

•• Uncommon and deprecated directives •••
You’re unlikely to need these; look them up if necessary.
Abbreviate "string" "string" ... "string";

End;

Import variable variable ... variable;

Link "compiled_file";

Switches list_of_compiler_switches;

System_file;

•• File structure ••••••••••••••••••••••
A minimal source file:
Constant Story "MYGAME";
Constant Headline "^My first Inform game.^";
Constant MANUAL_PRONOUNS;

Include "Parser";
Include "VerbLib";

[Initialise; location = study; "^Hello!^";];

Class Room
with description "A bare room."
has light;

Class Furniture
with before [; Take,Pull,Push,Pushdir:

print_ret (The) self,
" is too heavy for that.";]

has static supporter;

Room study "Your study";

Furniture "writing desk" study
with name 'writing' 'desk' 'table';

Object –> –> axe "rusty axe"
with name 'rusty' 'blunt' 'axe' 'hatchet',

description "It seems old and blunt.";

Include "Grammar";

•• Compiler •••••••••••••••••••••••••
To compile (on a PC, use “infrmw32” at the DOS prompt):
inform commands source_file

Useful commands include:

To display full compiler help, type:
inform –h –h1 –h2

'word' that literal word
'w1'/'w2'/... any one of those literal words
attribute an object with that attribute
creature an object with animate attribute
held an object held by the player
noun an object in scope
noun=routine an object for which routine returns true
scope=routine an object in this re-definition of scope
multiheld one or more objects held by the player
multi one or more objects in scope
multiexcept as multi, omitting the specified object
multiinside as multi, omitting those in specified object
topic any text
number any number
routine a general parsing routine

–~S disable both Strict checks and Debug tools
–~SD disable Strict checks, enable Debug tools
–X enable Infix debugger
–r output all game text to file (for spell-check)
–s display game’s size and other statistics
–z display game’s memory map
–v8 compile in Version 8 format (default is v5)
+dir,dir,... search for Included files in these directories

